1、tf.keras.layers.Lambda()——匿名函数层解析
https://www.codenong.com/cs105908829/
作用:可以对输入的tensor进行处理
2、tf.keras.layers.experimental.preprocessing.Discretization
可以对数值型数据进行边界分桶特征处理
3、keras.layers.experimental.preprocessing.IntegerLookup
作用:可以对数值型特征进行oneHot或者multihot编码处理
4、keras.layers.Multiply()
https://keras.io/zh/layers/merge/
作用:
计算输入张量列表的(逐元素间的)乘积。
它接受一个张量的列表, 所有的张量必须有相同的输入尺寸, 然后返回一个张量(和输入张量尺寸相同)。
5、mlr——带有注意力机制的lr
https://zhuanlan.zhihu.com/p/129582122
对lr分段加权
6、tf.add_n函数的用法
作用:
实现一个列表的元素的相加。就是输入的对象是一个列表,列表里的元素可以是向量,矩阵,等
7、keras在特征处理时做特征交叉
fea1 = tf.keras.layers.Input(shape=(1,), name="fea1", dtype=tf.int64)
fea2= tf.keras.layers.Input(shape=(1,), name="fea2", dtype=tf.int64)
fea1_x_fea2_layer = tf.keras.layers.experimental.preprocessing.CategoryEncoding(max_tokens=200)(
tf.keras.layers.experimental.preprocessing.Hashing(num_bins=200)(inputs=[fea1, fea2]))
8、因子分解机模型——poly2
https://zhuanlan.zhihu.com/p/153500425
9、keras.layers.Dot
https://keras.io/zh/layers/merge/
两个向量求点积,即得到一个标量。
10、keras.layers.Add()
两个tensor(shape相同)求和,各元素求和。
11、layers.Layer.add_weight(shape=(input_dim, unit),
initializer=keras.initializers.RandomNormal(),
trainable=True)
https://zhuanlan.zhihu.com/p/59481536
构建权重
12、tf.nn.embedding_lookup
https://www.zhihu.com/question/5225