插值算法(最邻近差值、双线性插值、双三次插值)

本文详细介绍了图像插值的四种方法:最邻近差值、线性插值、双线性插值和双三次插值。通过实例演示了如何将坐标变换和权重计算应用到这些插值技术中,适用于图像缩放和像素值计算。

一、最邻近差值(nearest)

含义: 选取离目标点最近的点的值作为新的插入点的值。请添加图片描述
两幅图坐标值变换关系:
(代码未验证)

for i=1:size(dist,1)
	x = round(i* (size(src,1)/size(dist,1)));  %dst横坐标变换到src坐标系,最临近点
	for j=1:size(dist,2)
		y = round(j* (size(src,2)/size(dist,2)));  %dst纵坐标变换到src坐标系,最临近点
		dist(i,j)=src(x,y); % 最临近点赋值
	end
end

在这里插入图片描述

二、线性插值 (linear)

含义: 根据两点建立线性关系,以距离作为权重进行插值。
请添加图片描述

三、双线性插值(bilinear)

含义: 分别从两个方向上各进行一次线性插值。
请添加图片描述
对于p点的灰度值,可以通过p点周围Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点来获得。

在横坐标方向上进行两次线性插值:

根据Q11、Q21: f ( R 1 ) ≈ x 2 − x x 2 − x 1 f ( Q 11 ) + x − x 1 x 2 − x 1 f ( Q 21 )  where  R 1 = ( x , y 1 ) f\left(R_{1}\right) \approx \frac{x_{2}-x}{x_{2}-x_{1}} f\left(Q_{11}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} f\left(Q_{21}\right) \quad \text { where } R_{1}=\left(x, y_{1}\right) f(R1)x2x1x2xf(Q11)+x2x1xx1f(Q21) where R1=(x,y1)
根据Q21、Q22: f ( R 2 ) ≈ x 2 − x x 2 − x 1 f ( Q 12 ) + x − x 1 x 2 − x 1 f ( Q 22 )  where  R 2 = ( x , y 2 ) f\left(R_{2}\right) \approx \frac{x_{2}-x}{x_{2}-x_{1}} f\left(Q_{12}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} f\left(Q_{22}\right) \quad \text { where } R_{2}=\left(x, y_{2}\right) f(R2)x2x1x2xf(Q12)+x2x1xx1f(Q22) where R2=(x,y2)

在纵坐标方向上进行一次线性插值:

根据R1和R2: f ( P ) ≈ y 2 − y y 2 − y 1 f ( R 1 ) + y − y 1 y 2 − y 1 f ( R 2 ) f(P) \approx \frac{y_{2}-y}{y_{2}-y_{1}} f\left(R_{1}\right)+\frac{y-y_{1}}{y_{2}-y_{1}} f\left(R_{2}\right) f(P)y2y1y2yf(R1)+y2y1yy1f(R2)

整理得:
f ( P ) ≈ ( y 2 − y ) ( x 2 − x ) ( y 2 − y 1 ) ( x 2 − x 1 ) f ( Q 11 ) + ( y 2 − y ) ( x − x 1 ) ( y 2 − y 1 ) ( x 2 − x 1 ) f ( Q 21 ) + ( y − y 1 ) ( x 2 − x ) ( y 2 − y 1 ) ( x 2 − x 1 ) f ( Q 12 ) + ( y − y 1 ) ( x − x 1 ) ( y 2 − y 1 ) ( x 2 − x 1 ) f ( Q 22 ) \begin{aligned} f(P) & \approx \frac{\left(y_{2}-y\right)\left(x_{2}-x\right)}{\left(y_{2}-y_{1}\right)\left(x_{2}-x_{1}\right)} f\left(Q_{11}\right)+\frac{\left(y_{2}-y\right)\left(x-x_{1}\right)}{\left(y_{2}-y_{1}\right)\left(x_{2}-x_{1}\right)} f\left(Q_{21}\right) \\ &+\frac{\left(y-y_{1}\right)\left(x_{2}-x\right)}{\left(y_{2}-y_{1}\right)\left(x_{2}-x_{1}\right)} f\left(Q_{12}\right)+\frac{\left(y-y_{1}\right)\left(x-x_{1}\right)}{\left(y_{2}-y_{1}\right)\left(x_{2}-x_{1}\right)} f\left(Q_{22}\right) \end{aligned} f(P)(y2y1)(x2x1)(y2y)(x2x)f(Q11)+(y2y1)(x2x1)(y2y)(xx1)f(Q21)+(y2y1)(x2x1)(yy1)(x2x)f(Q12)+(y2y1)(x2x1)(yy1)(xx1)f(Q22)

由于图像双线性插值只使用相邻4个点,因此上式分母都为1。整理公式得到:

f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)

图示:
在这里插入图片描述
代码示例(未验证):

for i=1:size(dist,1)
	x = double(i* (size(src,1)/size(dist,1)));  
	u = x-floor(x); %向下取整,求差值
	for j=1:size(dist,2)
		y = double(j* (size(src,2)/size(dist,2)));  
		v = y-floor(y); %向下取整,求差值
		dist(i,j)=(1-u)*(1-v)*src(i,j) + (1-u)*v*src(i,j+1) + u*(1-v)*src(i+1,j) + u*v*src(i+1,j+1);
	end
end

四、双三次插值(cubic)

含义: 对于某点进行插值时,考虑该点周围16个像素的影响。首先构造一个cubic函数,根据该点不同位置的cubic函数值作为权值,对该点进行插值赋值。
在这里插入图片描述
对待插值的像素点 ( x , y ) (x,y) (x,y)(x和y可以为浮点数),取其附近的4x4邻域点 ( x i , y j ) , i , j = 0 , 1 , 2 , 3 (x_i,y_j), i,j = 0,1,2,3 (xi,yj),i,j=0,1,2,3。按如下公式进行插值计算:
f ( x , y ) = ∑ i = 0 3 ∑ j = 0 3 f ( x i , y j ) W ( x − x i ) W ( y − y j ) f(x, y)=\sum_{i=0}^{3} \sum_{j=0}^{3} f\left(x_{i}, y_{j}\right) W\left(x-x_{i}\right) W\left(y-y_{j}\right) f(x,y)=i=03j=03f(xi,yj)W(xxi)W(yyj)

代码示例(未验证):

% 构造cubic函数,取a=-1
function A=sw(w1)
w=abs(w1);
if w<1&&w>=0
   A=1-2*w^2+w^3;
elseif w>=1&&w<2
   A=4-8*w+5*w^2-w^3;
else
  A=0;
end
for i=1:size(dist,1)
	x = double(i* (size(src,1)/size(dist,1)));  
	u = x-floor(x); %向下取整,求差值
   	A=[sw(1+u) sw(u) sw(1-u) sw(2-u)];  
	for j=1:size(dist,2)
		y = double(j* (size(src,2)/size(dist,2)));  
		v = y-floor(y); %向下取整,求差值
		C=[sw(1+v);sw(v);sw(1-v);sw(2-v)];
     	B=[src(i-1,j-1) 	src(i-1,j)	 src(i-1,j+1)	src(i-1,j+2)
       	src(i,j-1)   	src(i,j) 		 src(i,j+1)   src(i,j+2)
      	src(i+1,j-1)   src(i+1,j) 	src(i+1,j+1) 	src(i+1,j+2)
       	src(i+2,j-1) 	src(i+2,j) 	src(i+2,j+1)	src(i+2,j+2)];
     	dis(i,j)=(A*B*C);
	end
end

备注:所有代码是为了方便加深理解算法过程写的matlab伪代码片段,未在编译器上运行测试

参考文章:
【图像插值算法总结】https://www.cnblogs.com/laozhanghahaha/p/12580822.html
【图像缩放之双三次插值法】https://blog.csdn.net/qq_29058565/article/details/52769497
【双三次插值算法详解 含python实现】https://www.cnblogs.com/wojianxin/p/12516762.html

<think>好的,我现在要帮用户解决如何用Python实现双三次插值算法的问题。首先,我需要先理解什么是双三次插值。根据用户提供的引用资料,双三次插值是一种上采样方法,利用周围16个最近邻像素的信息,通过三次卷积计算得到更平滑的结果。这种方法比最近邻和双线性插值更复杂,但效果更好,常用于专业图像处理软件中。 接下来,我需要确定用户的需求是什么。用户明确提到需要Python的代码示例,所以重点在于提供一个可运行的代码,并且解释其实现步骤。但在此之前,我需要确保自己正确理解双三次插值的原理,这样才能准确编写代码。 根据引用[4],双三次插值使用周围16个像素,这意味着对于目标图像中的每个像素,需要找到原图中对应的16个邻近点。然后,根据这些点的像素值,通过加权计算得到目标像素的值。这里的权重计算可能涉及到一个三次函数,比如BiCubic基函数,通常使用类似$W(x)$的公式。 我需要查阅具体的算法步骤。根据引用中的链接,双三次插值的步骤可能包括: 1. 确定目标图像中像素在原图像中的对应位置。 2. 找到该位置周围的16个邻近像素。 3. 计算每个邻近像素的权重,使用三次函数。 4. 加权求和得到目标像素值。 接下来,我需要考虑如何将这些步骤转化为Python代码。可能需要的库包括NumPy用于数组操作,PIL或OpenCV用于图像处理。不过用户可能需要纯Python的实现,或者结合这些库的示例。 另外,用户提供的引用中有Python实现的链接,比如引用[2]中的第三个链接。我需要参考这些资料,确保代码的正确性。但需要注意的是,用户可能需要一个简化的示例,而不是复杂的实现。 现在,我需要处理具体实现的步骤: 1. 加载原始图像,并将其转换为数组。 2. 确定目标图像的尺寸,计算缩放比例。 3. 遍历目标图像的每个像素,找到其在原图中的坐标。 4. 根据该坐标,找到周围16个邻近像素的位置。 5. 计算每个邻近像素的权重,使用三次卷积公式。 6. 对16个像素的加权求和,得到目标像素的值。 这里的关键点是如何计算权重。三次卷积通常使用一个权重函数,如: $$ W(x) = \begin{cases} (a+2)|x|^3 - (a+3)|x|^2 + 1 & \text{当 } |x| \leq 1 \\ a|x|^3 - 5a|x|^2 + 8a|x| -4a & \text{当 } 1 < |x| < 2 \\ 0 & \text{其他} \end{cases} $$ 其中,a通常取-0.5或-0.75。这个函数需要应用到x和y方向的差值上,然后相乘得到二维的权重。 在代码实现时,需要处理边缘像素的问题,可能需要对超出图像边界的像素进行镜像填充或其他处理,但为了简化,可以先假设图像足够大,或者忽略边缘情况。 现在,我开始编写代码的大纲: - 导入必要的库,如numpy和PIL。 - 定义BiCubic权重函数。 - 定义双三次插值函数,接受输入图像和目标尺寸。 - 遍历每个目标像素,计算在原图中的位置。 - 收集周围的16个像素,计算权重,加权求和。 - 返回处理后的图像。 需要注意,纯Python实现可能效率较低,但对于示例来说是可以接受的。或者,可以使用向量化操作来加速。 测试时,可以使用小图像进行验证,比如放大2倍,检查输出是否正确。同时,可能需要处理RGB图像,即对每个通道分别进行插值。 最后,确保代码中的注释和步骤解释清晰,方便用户理解。同时,根据引用资料,在适当的地方添加引用标识,例如关于三次卷积算法的部分引用[3]和[4]。 现在,我需要验证代码的正确性。比如,当原图是2x2,放大到4x4,是否能正确插值。但由于双三次插值需要周围16个像素,可能需要更大的原图,或者在边缘处进行填充处理。 总结,步骤包括:理解算法原理,确定实现步骤,编写代码,处理边界情况,测试验证,并引用相关资料。</think>### 双三次插值Python实现方法 #### 算法原理 双三次插值通过目标像素周围$16$个邻近像素加权计算新像素值,权重由三次卷积函数$W(x)$确定: $$ W(x) = \begin{cases} 1.5|x|^3 - 2.5|x|^2 + 1 & |x| \leq 1 \\ -0.5|x|^3 + 2.5|x|^2 -4|x| +2 & 1 < |x| < 2 \\ 0 & \text{其他} \end{cases} $$ (参数$a=-0.5$时的简化形式)[^3][^4] #### Python实现代码 ```python import numpy as np from PIL import Image def bicubic_kernel(x, a=-0.5): x = np.abs(x) if x <= 1: return (a + 2)*x**3 - (a + 3)*x**2 + 1 elif x < 2: return a*x**3 - 5*a*x**2 + 8*a*x - 4*a else: return 0 def bicubic_interpolation(img, new_size): src_h, src_w = img.shape[:2] dst_h, dst_w = new_size scale_x = src_w / dst_w scale_y = src_h / dst_h dst_img = np.zeros((dst_h, dst_w, 3), dtype=np.uint8) for i in range(dst_h): for j in range(dst_w): # 计算原图对应坐标 x = j * scale_x y = i * scale_y # 找到周围16个像素的坐标 x0 = int(x) - 1 y0 = int(y) - 1 x_coords = [x0, x0+1, x0+2, x0+3] y_coords = [y0, y0+1, y0+2, y0+3] # 计算权重 dx = x - (x0 + 1) dy = y - (y0 + 1) wx = [bicubic_kernel(dx + 1), bicubic_kernel(dx), bicubic_kernel(1 - dx), bicubic_kernel(2 - dx)] wy = [bicubic_kernel(dy + 1), bicubic_kernel(dy), bicubic_kernel(1 - dy), bicubic_kernel(2 - dy)] # 加权求和 rgb = [0, 0, 0] for m in range(4): for n in range(4): if (y_coords[m] < 0 or y_coords[m] >= src_h or x_coords[n] < 0 or x_coords[n] >= src_w): continue weight = wx[n] * wy[m] rgb += img[y_coords[m], x_coords[n]] * weight dst_img[i, j] = np.clip(rgb, 0, 255) return dst_img # 使用示例 img = Image.open('input.jpg') img_array = np.array(img) new_size = (img.height*2, img.width*2) # 放大两倍 result = bicubic_interpolation(img_array, new_size) Image.fromarray(result).save('output.jpg') ``` #### 关键步骤说明 1. **坐标映射**:将目标图像坐标映射回原图坐标系(浮点坐标) 2. **邻域采样**:确定周围$4×4$共$16$个像素的位置(需处理越界问题) 3. **权重计算**:分别计算$x$和$y$方向的权重值,使用三次卷积函数 4. **加权求和**:对$16$个像素进行双线性加权求和,并限制像素值范围 #### 优化建议 - 使用numpy向量化运算替代循环提升速度 - 对越界坐标使用镜像填充(`np.pad`) - 预计算权重表加速运算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值