人工智能之启发式搜索算法

本文介绍了如何使用启发式搜索算法,特别是A*搜索,来解决八数码问题。详细阐述了评估函数、贪婪最佳优先搜索和A*搜索的工作原理,并提供了编程任务,要求实现A*搜索算法来找到从初始状态到目标状态的最小代价路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有偿提供CS的人工智能/网络空间安全方向的大学生课程设计、算法设计、项目设计的思路及实现指导;竞赛PPT、项目申报书等撰写润色等。 

.任务描述

本关任务:八数码问题是在一个3×3的棋盘上有1−8位数字随机分布,以及一个空格,与空格相连的棋子可以滑动到空格中,问题的解是通过空格滑动,使得棋盘转化为目标状态,如下图所示。

        为了简化问题的输入,首先将空格用数字0表示,然后将3×3的棋盘用9位长的字符串表示,则上图的初始状态为724506831,目标状态为012345678,本关卡所有目标状态均为012345678,也保证初始状态到目标状态有解。

        对于上图的初始状态,将数字2移动到空格,称之为u操作(空格上移),将数字3移动到空格,称之为d操作(空格下移),将数字5移动到空格,称之为l操作(空格左移),将数字6移动到空格,称之为r操作(空格右移),则一个合法移动路径为lurdrdllurrdllurrulldrrull。

 相关知识

<think>好的,我现在需要回答用户关于平台中人工智能启发式搜索算法教程实现的问题。首先,我要确保自己正确理解用户的需求。用户提到了平台、人工智能启发式搜索算法、教程和实现这几个关键词,所以需要围绕这些点展开。 首先,我需要回忆一下平台的相关资料。根据用户提供的引用,引用[1]提到A算法是Nilsson提出的最佳图搜索算法,使用评估函数f(n)=g(n)+h(n),其中h(n)是到目标状态的最优路径代价。引用[2]解释了启发式搜索与一致代价搜索的区别,强调f(n)和g(n)的不同作用。引用[3]则涉及平台的一个实验,要求输出最短路径,并用0、1、8标记区域。这些引用都是关于启发式搜索在平台上的应用,特别是A*算法。 接下来,我需要整理这些信息,按照用户的要求结构清晰、分步骤说明。用户可能需要知道平台上的教程是如何教授启发式搜索的,包括理论知识和代码实现。因此,我的回答应该包括理论部分(如A*算法的原理、评估函数)和实践部分(如代码示例和实验指导)。 在组织内容时,要确保行内数学表达式用$...$格式,比如$f(n)=g(n)+h(n)$。独立公式用$$...$$,并单独成段。例如,在解释评估函数时,需要正确使用LaTeX格式。同时,回答中要引用提供的引用资料,在适当的位置添加引用标识,如[^1]、[^2]、[^3]。 然后,我需要考虑用户可能遇到的问题。例如,用户可能想知道如何在平台上具体实现A*算法,或者如何理解评估函数中各部分的作用。因此,在回答中需要提供具体的步骤,比如定义节点类、实现优先队列、编写启发函数等,并结合代码示例进行说明。 同时,用户要求生成相关问题,我需要根据内容提出相关的问题,如算法优化、应用场景等。这些问题应该与平台的教学内容相关,帮助用户进一步学习。 最后,检查回答是否符合所有系统级指令:正确使用LaTeX格式、中文回答、引用标识、问题生成等。确保没有遗漏任何要求,比如代码块的使用和引用位置的正确性。</think>### 平台中启发式搜索算法教程内容梳理 平台关于人工智能启发式搜索算法教程主要围绕**A*算法**展开,包含以下核心内容: --- #### 一、A*算法理论基础 1. **评估函数定义** A*算法的核心是评估函数: $$f(n) = g(n) + h(n)$$ - $g(n)$:从初始状态到当前状态的实际路径代价 - $h(n)$:当前状态到目标状态的**启发式估计代价**(需满足可采纳性,即$h(n) \leq h^*(n)$,其中$h^*(n)$为真实最优代价)[^1] 2. **与一般启发式搜索的区别** A*算法通过优先队列按$f(n)$排序节点,而一致代价搜索按$g(n)$排序。A*的$f(n)$融合了实际代价和启发式估计,能更高效地引导搜索方向[^2]。 --- #### 二、平台实验实现步骤 以下为平台“最短路径规划”实验的实现框架(Python示例): ```python class Node: def __init__(self, pos, parent=None): self.pos = pos # 当前坐标 (x,y) self.parent = parent self.g = 0 # 实际代价 self.h = 0 # 启发式估计代价 self.f = 0 # f(n) = g(n) + h(n) def __lt__(self, other): return self.f < other.f # 优先队列按f值排序 def heuristic(a, b): # 曼哈顿距离作为启发函数(需满足可采纳性) return abs(a[0] - b[0]) + abs(a[1] - b[1]) def a_star(grid, start, end): open_list = [] heapq.heappush(open_list, start) closed_set = set() while open_list: current = heapq.heappop(open_list) if current.pos == end.pos: return reconstruct_path(current) # 回溯路径 closed_set.add(current.pos) for neighbor in get_neighbors(grid, current): if neighbor.pos in closed_set: continue tentative_g = current.g + 1 # 假设每步代价为1 if neighbor not in open_list or tentative_g < neighbor.g: neighbor.g = tentative_g neighbor.h = heuristic(neighbor.pos, end.pos) neighbor.f = neighbor.g + neighbor.h heapq.heappush(open_list, neighbor) return None # 无可行路径 ``` **关键点说明**: - 地图用二维数组`grid`表示,`0`为可通行区域,`1`为障碍物[^3] - 路径标记方法:将最终路径上的坐标值设为`8` - 启发函数选择:实验中常用曼哈顿距离或欧氏距离,需根据场景选择可采纳的$h(n)$ --- #### 三、教学实验目标 平台通过以下任务训练学生能力: 1. 理解启发式函数对搜索效率的影响 2. 实现优先级队列管理(对比DFS/BFS) 3. 分析算法复杂度与路径最优性 4. 掌握路径回溯与可视化方法(如矩阵标记`8`) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ad_m1n

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值