概率更新机制下的量子性别之战游戏分析
1. 概率更新机制概述
在空间模拟中,采用了一种概率更新机制。通常情况下会采用确定性的模仿最优规则,但这里的模拟采用了概率更新。在该机制下,通用玩家 (i, j) 会以与其邻居收益成比例的概率采用其邻居 (k, l) 的参数。具体而言,用 N(i, j) 表示单元格 (i, j) 的邻居集合,在时间步 T 游戏回合结束后,单元格 (i, j) 被玩家 (k, l) 的参数占据的概率为:
[P[(\theta(i, j), \alpha(i, j))(T + 1) = (\theta(k, l), \alpha(k, l))(T)] = \frac{p(T) {(k, l)}}{\sum {(i^ , j^ ) \in N(i, j)} p(T)_{(i^ , j^ )}}]
由于动态中存在概率成分时,收敛到稳态比确定性情况更具挑战性,所以模拟运行到 T = 500,而非通常的 T = 200。
2. 概率更新下的 QBOS 游戏分析
2.1 双参数 QBOS 游戏
在双参数 QBOS 游戏中,玩家 A 和 B 分别被赋予男性(♂)和女性(♀)的角色。固定 r = 1,R 分别取值为 2、4 和 6。以空间量子 2P - QBOS(5, 1) 为例,研究了可变纠缠因子 γ 下的情况。
- 量子参数变化 :无论 γ 如何变化,α 参数都稳定在接近 π/4 的值,特别是 αB;而随着 γ 开始增加,θ 参数变得相当小。在图 6.1 中,θA 保持在较低值,即使在最大纠缠时也仅接近 π/16