算法题:189. 轮转数组

题目:

给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。

示例 1:

输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]

示例 2:

输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释: 
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]

提示:

  • 1 <= nums.length <= 105
  • -231 <= nums[i] <= 231 - 1
  • 0 <= k <= 105

进阶:

  • 尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。
  • 你可以使用空间复杂度为 O(1) 的 原地 算法解决这个问题吗?

 

解题思路
        重要信息:"modify nums in-place instead",这条信息非常关键,指的是原位变化,那么什么是原位变化呢?python是怎么判断是在原位没有改变的呢?
        我们都知道,实际上我们的变量都是一个对象,这个对象拥有两个基本属性——value和id,value就是变量里存储的值,id就是变量的实际存储的内存地址,根据这个内存地址我们就可以找到对应的变量数据,这就是关键所在了:原位修改指的是运行完毕后,nums的id地址不变,也就是说,一切会导致nums最后id改变的实现方式都是错误的,因为leetcode编译器会直接去读取原始的内存地址中存储的数据,如果你新建了nums变量,在新的id地址上实现了效果,但是很不幸,没用,因为原来id地址上的内容完全没改变,所以你的结果还是原来的模样,未曾改变半分,所以这也是很多人明明print(nums)看到了数据改变,但是编译器显示nums未曾改变的原因。

方法一:使用python中list的内置方法完成

class Solution:
    def rotate(self, nums: List[int], k: int) -> None:
        """
        Do not return anything, modify nums in-place instead.
        """
        # nums.pop()是弹出并原地删除list中的最后一位数据
        # nums.insert(index,num)是表示在指定索引位置插入数据,如果索引长度超过list长度,会直接插入到最后一位
        for i in range(k):
            nums.insert(0,nums.pop())

时间复杂度:O(n × k)

  1. nums.pop()

    • 每次弹出列表最后一个元素,时间复杂度为 O(1)(因为直接访问末尾)。

  2. nums.insert(0, x)

    • 每次在列表开头插入元素,需要将列表中所有元素向后移动一位,时间复杂度为 O(n)n 是列表长度)。

  3. 循环 k 次

    • 总时间复杂度为 O(k × n)

    • 当 k 接近 n 时,最坏情况为 O(n²)(例如 k = n)。

空间复杂度:O(1)

  • 仅使用了常数级别的额外空间(如变量 i 和临时存储弹出的元素),没有依赖输入规模的额外数据结构,因此空间复杂度为 O(1)(原地修改)。

方法二:取模 + 切片

class Solution:
        """
        Do not return anything, modify nums in-place instead.
        """
    def rotate(self,nums:list[int],k:int) -> None:
        k = k % len(nums)
        nums[:] = nums[-k:] + nums[:-k]

1. 为什么需要 k % len(nums)

  • 问题背景
    当旋转次数 k 等于数组长度 n 时,旋转之后其实列表是没有变化的。当旋转次数 k 大于数组长度 n 时,旋转 k 次和旋转 k % n 次的效果 完全相同

    • 例如:数组 [1, 2, 3],旋转 4 次(4 % 3 = 1)等价于旋转 1 次。

    • 旋转 n 次等于没旋转(数组恢复原状)。

  • 数学原理
    取模运算将 k 映射到 [0, n-1] 的范围内,避免无效操作。

  • 时间 O(n),但需临时存储切片(空间 O(n))。

方法三:三次反转(严格 O(1) 空间)

class Solution:
    def rotate(self, nums: List[int], k: int) -> None:
        """
        Do not return anything, modify nums in-place instead.
        """
        def reverse(l,r):
            while l<r:
                nums[l] ,nums[r] = nums[r], nums[l]
                l+=1
                r-=1
        
        n=len(nums)
        k=k%n
        reverse(0,n-1) # 整体反转
        reverse(0,k-1) # 前半部分分反转
        reverse(k,n-1) # 后半部分反转
        
  • 时间 O(n)空间 O(1)(完全原地操作)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值