题目:
给定一个整数数组
nums
,将数组中的元素向右轮转k
个位置,其中k
是非负数。示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3 输出:[5,6,7,1,2,3,4]
解释: 向右轮转 1 步:[7,1,2,3,4,5,6]
向右轮转 2 步:[6,7,1,2,3,4,5]
向右轮转 3 步:[5,6,7,1,2,3,4]
示例 2:
输入:nums = [-1,-100,3,99], k = 2 输出:[3,99,-1,-100] 解释: 向右轮转 1 步: [99,-1,-100,3] 向右轮转 2 步: [3,99,-1,-100]提示:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
0 <= k <= 105
进阶:
- 尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。
- 你可以使用空间复杂度为
O(1)
的 原地 算法解决这个问题吗?
解题思路
重要信息:"modify nums in-place instead",这条信息非常关键,指的是原位变化,那么什么是原位变化呢?python是怎么判断是在原位没有改变的呢?
我们都知道,实际上我们的变量都是一个对象,这个对象拥有两个基本属性——value和id,value就是变量里存储的值,id就是变量的实际存储的内存地址,根据这个内存地址我们就可以找到对应的变量数据,这就是关键所在了:原位修改指的是运行完毕后,nums的id地址不变,也就是说,一切会导致nums最后id改变的实现方式都是错误的,因为leetcode编译器会直接去读取原始的内存地址中存储的数据,如果你新建了nums变量,在新的id地址上实现了效果,但是很不幸,没用,因为原来id地址上的内容完全没改变,所以你的结果还是原来的模样,未曾改变半分,所以这也是很多人明明print(nums)看到了数据改变,但是编译器显示nums未曾改变的原因。
方法一:使用python中list的内置方法完成
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
"""
Do not return anything, modify nums in-place instead.
"""
# nums.pop()是弹出并原地删除list中的最后一位数据
# nums.insert(index,num)是表示在指定索引位置插入数据,如果索引长度超过list长度,会直接插入到最后一位
for i in range(k):
nums.insert(0,nums.pop())
时间复杂度:O(n × k)
-
nums.pop()
:-
每次弹出列表最后一个元素,时间复杂度为 O(1)(因为直接访问末尾)。
-
-
nums.insert(0, x)
:-
每次在列表开头插入元素,需要将列表中所有元素向后移动一位,时间复杂度为 O(n)(
n
是列表长度)。
-
-
循环
k
次:-
总时间复杂度为 O(k × n)。
-
当
k
接近n
时,最坏情况为 O(n²)(例如k = n
)。
-
空间复杂度:O(1)
-
仅使用了常数级别的额外空间(如变量
i
和临时存储弹出的元素),没有依赖输入规模的额外数据结构,因此空间复杂度为 O(1)(原地修改)。
方法二:取模 + 切片
class Solution:
"""
Do not return anything, modify nums in-place instead.
"""
def rotate(self,nums:list[int],k:int) -> None:
k = k % len(nums)
nums[:] = nums[-k:] + nums[:-k]
1. 为什么需要 k % len(nums)
?
-
问题背景:
当旋转次数k
等于数组长度n
时,旋转之后其实列表是没有变化的。当旋转次数k
大于数组长度n
时,旋转k
次和旋转k % n
次的效果 完全相同。-
例如:数组
[1, 2, 3]
,旋转4
次(4 % 3 = 1
)等价于旋转1
次。 -
旋转
n
次等于没旋转(数组恢复原状)。
-
-
数学原理:
取模运算将k
映射到[0, n-1]
的范围内,避免无效操作。 -
时间 O(n),但需临时存储切片(空间 O(n))。
方法三:三次反转(严格 O(1) 空间)
class Solution:
def rotate(self, nums: List[int], k: int) -> None:
"""
Do not return anything, modify nums in-place instead.
"""
def reverse(l,r):
while l<r:
nums[l] ,nums[r] = nums[r], nums[l]
l+=1
r-=1
n=len(nums)
k=k%n
reverse(0,n-1) # 整体反转
reverse(0,k-1) # 前半部分分反转
reverse(k,n-1) # 后半部分反转
-
时间 O(n),空间 O(1)(完全原地操作)