三阶Bezier曲线,已知曲线上一点到曲线起点的距离为L,计算这个点的参数u的方法

1. 曲线定义

三阶(三次)贝塞尔曲线由四个点定义:

  • 起点:P₀
  • 控制点1:P₁
  • 控制点2:P₂
  • 终点:P₃

曲线上任意点的坐标由参数 u(0 ≤ u ≤ 1)表示:

B(u) = (1−u)³·P₀ + 3(1−u)²·u·P₁ + 3(1−u)·u²·P₂ + u³·P₃

2. 曲线导数(切向量)

B'(u) = 3(1−u)²·(P₁ − P₀) + 6(1−u)·u·(P₂ − P₁) + 3u²·(P₃ − P₂)

3. 弧长公式

从起点(u=0)到参数 u 处的弧长 s(u) 为:

s(u) = ∫₀ᵘ ‖B'(ξ)‖ dξ

其中 ‖B'(ξ)‖ 表示向量 B'(ξ) 的长度(即欧几里得范数)。

4. 已知弧长 L,求参数 u

给定弧长 L,求对应的参数 u,即求解方程:

s(u) = L

由于该积分没有解析解,必须使用数值方法求解。

5. 推荐数值方法

(1) 牛顿-拉夫逊法(推荐)

迭代公式:

uₙ₊₁ = uₙ − (s(uₙ) − L) / ‖B'(uₙ)‖

  • 初始值 u₀ 可设为 L / 总曲线长度(预估)
  • s(uₙ) 使用数值积分(如辛普森法)计算
  • ‖B'(uₙ)‖ 直接计算向量模长

(2) 预计算弧长表(高效)

  • 在 u ∈ [0,1] 上均匀采样,计算每个点的累积弧长
  • 构建 (u, s(u)) 查找表
  • 给定 L,通过插值(如线性插值)快速找到对应 u

说明:

  • 该问题属于弧长参数化(Arc-Length Parameterization) 的逆问题
  • 实际应用中建议预处理,避免实时求解积分
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值