编译原理——根源已知算符优先矩阵求解bell矩阵,进而求出算符优先函数

本文深入探讨了编译原理,通过已知的算符优先矩阵来解决Bell矩阵的问题,进一步导出算符优先函数。内容涉及矩阵运算和C#编程语言的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文法为:

 

 

算符优先矩阵为: 

算符优先函数 

 

 

#include "stdio.h"
int main()
{
    int su[10][10];
    int a[5][5];
    int b[5][5];
    int c[5][5];
    int i, j,k;
    char zifu[5][5]={
  
  {'>','<','<','>','<',},
    {'>','>','<','>','<',},
    {'<','<','<','=','<',},
    {'>','>','!','>','!',},
    {'>','>','!','>','!',}};

    for(i=0;i<10;i++)
    {
        for(j=0;j<10;j++)
            su[i][j]=0;
    }


     for(i=0;i<5;i++)
    {
      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值