拉丁矩阵

/**
	
【问题描述】现有n种不同形状的宝石,每种宝石有足够多颗。欲将这些宝石排列成m行n列的一个矩阵,m≤n,使矩阵中每行和每列的宝石都没有相同形状。试设计一个算法,计算出对于给定的m和n,有多少种不同的宝石排列方案。

【算法设计】对于给定的m和n,计算出不同的宝石排列方案数。

【输入形式】第1行有2个正整数m和n(0<m≤n<9).
【输出形式】将计算的宝石排列方案输出。
【样例输入】

3  3
【样例输出】

12
【样例说明】
【评分标准】	
*/


#include<stdio.h>
#include<stdlib.h>

int num[10][10];
int m,n;
int count=0;

void swap(int *num1,int *num2)
{
    int temp;
    temp = *num1;
    *num1 = *num2;
    *num2 = temp;
}
int yes(int r,int c,int k)
{
    int i;
    for(i = 1; i < r; i++)
        if(num[i][c] == k) return 0;
        return 1;
}
void backtrack(int r,int c)
{
    int i, j;
    for(i = c; i <= n;i++){
        if(yes(r,c,num[r][i])){
            swap(&num[r][c],&num[r][i]);
            if(c == n){
            if(r == m){
                count+=1;
            }else {backtrack(r+1,2);}
        }else {backtrack(r,c+1);}
            swap(&num[r][c],&num[r][i]);
        }
    }
}
int main()
{
    int i, j, temp;
    scanf("%d %d",&m,&n);
    for(i = 1; i <= n; ++i)
    for(j = 1; j<=n; ++j)
        num[i][j] = j;
    for(i = 2; i <= n; ++i)
        swap(&num[i][1],&num[i][i]);
        if(m == n) m --;
        backtrack(2,2);
        int sum = 1;
        int sum1 = 1;
        int x;
        for(x = 1; x <= n;x++)
            sum *= x;
        for(x = 1; x <= n-1; x++)
            sum *= x;
        for(x = 1;x <= n - m; x++)
            sum1 *= x;
        printf("%d\n",(sum*count)/sum1);
        return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值