大家读完觉得有帮助记得关注和点赞!!!
一、基础架构分类
1. Transformer 系(大模型核心)
类型 | 核心机制 | 代表模型 | 应用场景 |
---|---|---|---|
Encoder | 双向注意力(全局上下文编码) | BERT, RoBERTa | 文本分类、NER |
Decoder | 自回归+掩码注意力(逐词生成) | GPT-3/4, LLaMA | 文本生成、代码补全 |
Encoder-Decoder | 双向编码+自回归解码 | T5, BART | 翻译、摘要 |
2. 卷积神经网络(CNN)系
类型 | 创新点 | 代表模型 | 优势场景 |
---|---|---|---|
经典CNN | 局部感知+参数共享 | ResNet, VGG | 图像分类 |
轻量CNN | 深度可分离卷积 | MobileNet, EfficientNet | 移动端部署 |
跨模态CNN | CNN+Transformer融合 | CLIP(图像分支) | 图文对齐 |
3. 递归神经网络(RNN)系
(虽被Transformer取代,但在特定场景仍有用武之地)
类型 | 结构特点 | 代表模型 | 适用场景 |
---|---|---|---|
LSTM | 门控机制(解决长程依赖) | BiLSTM-CRF | 序列标注(如NER) |
GRU | 简化门控(参数量少于LSTM) | Seq2Seq with GRU | 机器翻译(早期) |
二、大模型特有架构演进
1. 混合架构(Hybrid Models)
组合方式 | 案例 | 技术突破 |
---|---|---|
CNN + Transformer | ViT(图像分块输入Transformer) | 抛弃CNN,纯Transformer处理视觉任务 |
RNN + Attention | Transformer-XL | 引入循环机制提升长文本建模能力 |
GNN + Transformer | Graphormer | 图结构数据与Transformer融合 |
2. 稀疏专家模型(MoE)
模型 | 核心设计 | 优势 |
---|---|---|
Switch Transformer | 每层动态路由至1-2个专家模块 | 万亿参数扩展,推理成本仅增30% |
GLaM(Google) | 每token激活95B参数中的7B子集 | 训练效率提升7倍 |
3. 状态空间模型(SSM)
模型 | 数学基础 | 价值 |
---|---|---|
Mamba | 选择性状态空间(时变参数) | 长序列处理速度较Transformer快5倍 |
Hyena | 卷积替代注意力(隐式全局卷积核) | 降低显存占用40% |
三、多模态大模型架构
架构类型 | 关键技术 | 代表模型 | 能力示例 |
---|---|---|---|
双塔模型 | 独立编码器+相似度计算 | CLIP, ALIGN | 图文检索(Zero-Shot) |
融合编码器 | 单Transformer联合编码多模态数据 | Flamingo, Kosmos | 视觉问答(VQA) |
生成式跨模态 | 多模态输入→统一解码生成 | GPT-4V, Gemini | 图像描述、文档理解 |
四、前沿探索方向
-
神经符号模型
-
结合符号逻辑推理(如DeepMind的AlphaGeometry)
-
-
脉冲神经网络(SNN)
-
事件驱动计算(能耗仅为传统NN的1/100)
-
-
液态神经网络(LNN)
-
动态调整拓扑结构(MIT提出,适应变化环境)
-
关键结论总结
架构类型 | 核心优势 | 大模型代表 | 趋势 |
---|---|---|---|
Transformer | 全局依赖建模 + 并行训练 | GPT-4, LLaMA-2 | 持续主导文本/多模态任务 |
MoE | 万亿参数扩展 + 高效推理 | Mixtral 8x7B | 成为大模型规模化首选方案 |
SSM(Mamba) | 线性复杂度长序列处理 | Mamba-3B | 挑战Transformer霸主地位 |
多模态融合 | 统一表征学习 | Gemini Ultra | 通用人工智能(AGI)核心路径 |
工业界现状:Transformer+MoE(如Mixtral)成为开源大模型主流架构,而视觉任务中CNN-ViT混合体(如ConvNeXt)仍是高效解决方案。掌握架构演进逻辑(如从密集到稀疏、从注意力到SSM),是理解大模型技术生态的关键。