神经网络架构分类及代表模型有哪些?

大家读完觉得有帮助记得关注和点赞!!!

一、基础架构分类

1. Transformer 系(大模型核心)

类型核心机制代表模型应用场景
Encoder双向注意力(全局上下文编码)BERT, RoBERTa文本分类、NER
Decoder自回归+掩码注意力(逐词生成)GPT-3/4, LLaMA文本生成、代码补全
Encoder-Decoder双向编码+自回归解码T5, BART翻译、摘要

2. 卷积神经网络(CNN)系

类型创新点代表模型优势场景
经典CNN局部感知+参数共享ResNet, VGG图像分类
轻量CNN深度可分离卷积MobileNet, EfficientNet移动端部署
跨模态CNNCNN+Transformer融合CLIP(图像分支)图文对齐

3. 递归神经网络(RNN)系

(虽被Transformer取代,但在特定场景仍有用武之地)

类型结构特点代表模型适用场景
LSTM门控机制(解决长程依赖)BiLSTM-CRF序列标注(如NER)
GRU简化门控(参数量少于LSTM)Seq2Seq with GRU机器翻译(早期)

二、大模型特有架构演进

1. 混合架构(Hybrid Models)

组合方式案例技术突破
CNN + TransformerViT(图像分块输入Transformer)抛弃CNN,纯Transformer处理视觉任务
RNN + AttentionTransformer-XL引入循环机制提升长文本建模能力
GNN + TransformerGraphormer图结构数据与Transformer融合

2. 稀疏专家模型(MoE)

模型核心设计优势
Switch Transformer每层动态路由至1-2个专家模块万亿参数扩展,推理成本仅增30%
GLaM(Google)每token激活95B参数中的7B子集训练效率提升7倍

3. 状态空间模型(SSM)

模型数学基础价值
Mamba选择性状态空间(时变参数)长序列处理速度较Transformer快5倍
Hyena卷积替代注意力(隐式全局卷积核)降低显存占用40%

三、多模态大模型架构

架构类型关键技术代表模型能力示例
双塔模型独立编码器+相似度计算CLIP, ALIGN图文检索(Zero-Shot)
融合编码器单Transformer联合编码多模态数据Flamingo, Kosmos视觉问答(VQA)
生成式跨模态多模态输入→统一解码生成GPT-4V, Gemini图像描述、文档理解

四、前沿探索方向

  1. 神经符号模型

    • 结合符号逻辑推理(如DeepMind的AlphaGeometry)

  2. 脉冲神经网络(SNN)

    • 事件驱动计算(能耗仅为传统NN的1/100)

  3. 液态神经网络(LNN)

    • 动态调整拓扑结构(MIT提出,适应变化环境)


关键结论总结

架构类型核心优势大模型代表趋势
Transformer全局依赖建模 + 并行训练GPT-4, LLaMA-2持续主导文本/多模态任务
MoE万亿参数扩展 + 高效推理Mixtral 8x7B成为大模型规模化首选方案
SSM(Mamba)线性复杂度长序列处理Mamba-3B挑战Transformer霸主地位
多模态融合统一表征学习Gemini Ultra通用人工智能(AGI)核心路径

工业界现状:Transformer+MoE(如Mixtral)成为开源大模型主流架构,而视觉任务中CNN-ViT混合体(如ConvNeXt)仍是高效解决方案。掌握架构演进逻辑(如从密集到稀疏、从注意力到SSM),是理解大模型技术生态的关键。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值