自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(434)
  • 资源 (34)
  • 收藏
  • 关注

原创 网络安全溯源模型,详细溯源过程和原理架构及智能体

网络安全溯源模型正从单点分析向智能协同模型层:图嵌入与BERT解决路径还原难题,钻石模型揭示攻击者意图;架构层:分层处理亿级数据流,智能体实现“感知-决策-响应”闭环;实战层:电力系统攻击定位<50ms、金融反欺诈拦截率98%验证技术价值。实施建议企业可结合图模型(组织溯源) + BERT路径分析(内核层攻击)构建双引擎架构,嵌入RGPT智能体降低操作门槛;关基设施需强化反杀伤链自动化响应(SOAR),压缩C2阶段处置窗口。

2025-07-18 00:02:04 644

原创 缓解和防御 IoT 设备中的 DDoS 攻击

事实上,计算机网络的飞速发展 技术催生了互连的可能性 物理设备,例如车辆、计算机、电话、电器和其他嵌入了传感器、软件和网络连接的日常物品,以便这些设备可以 收集数据并相互交换 环境 [1]。我们 根据 ULA 对 IoT 设备网络进行分段 设备类型,并且我们实施了其他几种策略,例如 防火墙和访问控制列表 (ACL)、入口和出口 在网络边缘设备(路由器和防火墙)进行过滤, 速率限制和流量调整策略、入侵检测 以及预防系统 (IDS/IPS) 以及持续监测和事件报告。受感染的设备会成为僵尸网络中的爬虫程序。

2025-07-18 00:01:51 260

原创 从警报到情报的 LLM 辅助的基于主机的入侵检测框架

!摘要——基于主机的入侵检测系统(HIDS)是保护组织免受高级持续性威胁(APT)等高级威胁的关键防御组件。通过使用数据溯源等方法分析细粒度日志,HIDS已在捕获复杂的攻击痕迹方面显示出成功。尽管研究界和工业界取得了进展,但由于误报率高、跨环境结果不一致以及对人不友好的检测结果等问题,HIDS在部署环境中仍然经常遭到运营商的强烈反对。鉴于大型语言模型(LLM)具有广泛的攻击技术知识以及通过语义分析检测异常的能力,并且有最近的研究作为支撑,因此它们在推进HIDS的发展方面具有巨大的潜力。

2025-07-18 00:01:33 455

原创 MG-SOFT MIB Browser安装和使用手册

使用MIB Compiler工具进行编译,打开此图标:然后点击红框中的按钮,选择mib文件所在路径,进行编译1、运行2、运行之后界面3、点击编译项之后4、添加需要编译mib,然后点击OK5、等待一会,弹出如下窗体6、保存完毕之后关闭编译窗体7、返回到主界面,选择MIB8、点击向上的按钮,导入所有9、点击Query,在此菜单中选择需要项10、设置远程Ip地址11、选择和设置SNMP版本12、选择好对应项之后右键点击walk,获取到对应得信息如下。

2025-07-18 00:01:20 574

原创 华三路由器 GRE 手把手配置案例

通过本次实验,成功配置了华三路由器的 GRE 隧道,实现了两台路由器下挂不同网段的 PC 之间的通信。GRE 隧道是一种虚拟的点到点连接,能够将一种网络层协议封装在另一种网络层协议中,从而实现不同网络之间的通信。在配置 GRE 隧道时,需要正确配置隧道接口的 IP 地址、源地址和目的地址,并为相关网段配置静态路由,确保数据能够正确通过隧道转发。通过查看隧道接口状态和测试 PC 之间的通信,可以验证 GRE 配置的正确性。

2025-07-18 00:01:10 409

原创 供应链攻击的异构安全基元的安全隔区架构

大家读完觉得有帮助记得关注和点赞!!! 抽象SoC 平台设计安全架构是一项高度复杂且耗时的任务,通常需要数月的开发和细致的验证。即使是微小的架构疏忽也可能导致严重漏洞,从而破坏整个芯片的安全性。为了应对这一挑战,我们推出了 **CITADEL**,这是一个模块化安全框架,旨在简化 SoC 的强大安全架构的创建。CITADEL 提供了一个可配置的、即插即用的子系统,由自定义知识产权 (IP) 块组成,支持构建针对特定威胁量身定制的各种安全机制。作为一个具体的演示,我们实例化了 CITADEL 来防御供应链威胁

2025-07-17 00:08:11 729

原创 华三防火墙 SRv6(Segment Routing IPv6)技术详解

简化网络架构消除MPLS/Overlay多层封装 →降低50%报文开销精准业务调度通过SID将流量按需引导至防火墙(如安全服务链动态组合防火墙/IPS/负载均衡功能 →业务分钟级上线IPv6原生安全利用IPv6扩展头实现逐跳认证(AH/ESP)现网部署数据(华三某金融案例):时延降低40%(相比传统MPLS VPN)故障恢复时间<50ms(基于TI-LFA保护)策略变更效率提升10倍。

2025-07-17 00:07:37 518

原创 网络安全-网络安全智能体所有详细工作原理和架构及案例

原理革新:L4级动态规划(青藤无相AI)、多Agent协作(微软Magentic-UI)突破被动响应局限;架构升级:分层解耦设计支持亿级Token处理,联邦学习实现跨域进化;实战价值:电网威胁处置提速70%、金融漏洞挖掘效率×5、APT狩猎1分钟闭环。企业落地建议:从L3级智能体起步(如朱雀蓝军Bot),聚焦高价值场景(威胁狩猎/漏洞管理);防御体系需同步强化智能体自身安全(防提示注入、协议加固)。趋势研判:2026年L4智能体将覆盖50%头部企业,攻防博弈正式进入“机器战争”时代。

2025-07-17 00:06:18 640

原创 MFCC 进行频谱特征提取,实现稳健的网络入侵检测

在这项工作中,我们提出了一种利用 Mel 频率倒谱系数 (MFCC) 和 ResNet-18 来识别物联网网络流量异常的新方法,ResNet-18 是一种深度学习模型,以其在特征提取和基于图像的任务中的有效性而闻名。这种受生物启发的方法解决了 IoT 安全中的三个关键挑战:(1) 需要资源高效的特征提取,(2) 在嘈杂环境中进行稳健的模式识别,以及 (3) 实时处理高维网络流。展示了我们的 ResNet-18 和可学习的 MFCC 实现的改进的类分离,与基线模型相比,显示了不同的攻击类型集群。

2025-07-17 00:04:18 524

原创 3S 攻击针对DNN 模型空间、光谱和语义不可见后门攻击

大家读完觉得有帮助记得关注和点赞!!! 抽象后门攻击包括毒害训练数据或直接修改模型以植入隐藏行为,这会导致模型在存在特定触发器时对输入进行错误分类。 在推理过程中,该模型对良性样本保持了高准确度,但将中毒样本错误分类为攻击者指定的目标类。 关于后门攻击的现有研究已经探索了在空间、频谱(频率)和语义(特征)领域开发触发器,旨在使它们具有隐蔽性。 虽然一些方法考虑了设计在空间域和频谱域中都难以察觉的触发器,但很少有方法结合了语义域。 在本文中,我们提出了一种新颖的后门攻击,称为 3S 攻击,它在空间、光谱和语义

2025-07-17 00:04:03 576

原创 智能多模态-对比式威胁检测和溯源分析方法

但是,在攻击过程中,不可避免地会调用一些系统服务相关的文件,导致生成的攻击场景包含与攻击无关的节点。在节点级检测中,我们将已识别的攻击子图中的节点标记为攻击,将良性子图中的节点标记为良性,然后将识别的攻击节点与真实值进行比较。可以利用情报的语义相似性,在相似的语义空间中收集具有相同攻击模式的日志序列,帮助模型理解特定攻击模式对应的关键行为逻辑。与基于查询图的方法相比,确定适当的时间跨度也具有挑战性,因为太短的跨度可能会错过关键步骤,而太长的跨度可能会引入不相关的噪声并降低威胁识别的准确性。

2025-07-16 22:36:50 676

原创 White-Basilisk-漏洞检测的混合模型

软件漏洞的激增对网络安全构成了重大挑战,需要更有效的检测方法。值得注意的是,该模型在较大的数据集上保持了近乎最佳的性能,同时显示出向更具挑战性的数据集的合理转移,这表明 White-Basilisk 尽管规模紧凑,但仍能够学习可推广的漏洞模式。最令人印象深刻的是,性能分析表明,即使对于极长的序列,White-Basilisk 也能保持强大的检测能力,16K 令牌以下的序列的 F1 分数为 0.943,16K-32K 令牌的 F1 分数为 0.800,32K-65K 令牌的 F1 分数为 1.000。

2025-07-16 07:30:06 644

原创 华三防火墙Vxlan配置及流程、案例

网络设计原则Underlay网络:使用OSPF/BGP保证高可用Overlay规模:单VNI不超过500主机(防广播风暴)安全隔离:通过VNI+安全策略实现多租户隔离性能优化建议使用EVPN替代Flood & Learn(减少BUM流量)高可用方案VTEP双活:通过VSRP实现网关冗余vsrp 1配置清单速查bash# VXLAN基础模板vni 10000tunnel 10。

2025-07-16 00:03:53 579

原创 网络安全-攻防链、画像、溯源、指纹等详细原理、过程图和架构及案例

!网络安全中的攻防链、攻击者画像、溯源技术及指纹技术构成了现代防御体系的核心支柱。

2025-07-16 00:03:31 599

原创 使用DNS 隧道检测威胁态势的解决方案

域名系统 (DNS) 是一个分层和分散的命名系统,对互联网功能至关重要它将用户友好的域名(如 www.example.com)转换为查找和访问互联网资源所需的机器可读 IP 地址。作为互联网基础设施的核心组件,DNS 几乎用于所有在线交易,使其成为各种网络威胁的主要目标。由于其基础作用和广泛的信任,DNS 容易受到多种类型的攻击,威胁态势可见一斑,例如缓存中毒、放大和 DoS 攻击以及网络钓鱼攻击。这些漏洞为攻击者提供了多种破坏或纵 Internet 流量的可能性。

2025-07-16 00:03:14 767

原创 推理均衡及其在鱼叉式网络钓鱼中的应用

第三,混合代理的集成,即经典符号代理和基于 LLM 的代理交互,将为神经符号推理开辟新的途径,实现具有不同认知能力的代理的严格建模。为了提高其模型的保真度,发送者迭代地更新参数ξ∈Ξ通过观察消息在实践中的表现 — 通过记录的结果(例如,接收者是否点击ED)或使用接收者 LLM 响应策略的模拟版本进行模拟评估γD.这个过程被正式化为信念对齐步骤:给定一个最佳的发送者提示x∗,攻击者会生成消息m∼γ一个(⋅∣我一个,x∗,θ一个)并比较其猜想模型中的预测行为μ~ξ到实际行为分布σD∗(⋅∣m),由 (

2025-07-16 00:02:56 347

原创 WireShark报文分析总结

5.1、### 快速分析检查清单1. **概览**: Statistics → Summary 查看基本信息2. **协议分布**: Statistics → Protocol Hierarchy3. **主要通信方**: Statistics → Conversations4. **异常检查**: 查找错误、重传、异常状态码5. **时间分析**: I/O Graph 查看流量模式6. **内容检查**: Follow Stream 查看具体通信内容5.2、### 常见问题解决。

2025-07-15 22:58:51 809

原创 华三防火墙配置三三层配置及原理、转发流程、案例

2025-07-15 04:33:35 924

原创 网络安全接口网关的工作原理和架构

网络安全接口网关正向协议融合化(IPv6/5G/工业协议)、防御智能化(AI策略生成)、架构零信任化(持续动态认证)演进。基础架构:分层解耦设计平衡性能与安全性;关键技术:eBPF实现纳米级隔离,OpenResty支撑百万级并发;场景适配:从云原生到工业控制,提供定制化防护(如金融字段级加密 vs 工控实时性保障)。

2025-07-15 04:32:59 897

原创 关于 AI 下半场的思考:商业/应用篇

很关注创业者是不是那个真正行动的人,清楚自己要做什么,想办法推进,招人、找钱、做产品,遇到问题也能努力解决往前走。AI 的发展有点像烧开水,在水已热但还没烧开之前可能只能泡咖啡,但一旦到达 100 度的沸点,将会解锁蒸汽机,带来各行各业巨大的生产力变革。举个例子,AB 测试适合找到产品方案的细节差异,但技术早期往往是要在没有数据的情况下做选择,选对了就是 10 倍起步,选错就全盘皆输。现在 AI 产品其实已经很便宜,一个月可能只要花 20 美金,也就一顿饭的价格,但能帮助你先看到未来,也先抓住机会。

2025-07-15 04:32:25 309

原创 pytorch 用于目标检测跟踪(使用YOLOV11)详细的构建数据、训练过程、模型设置、推理及代码等

2025-07-15 04:31:54 469

原创 关于 AI 下半场的思考:技术/模型篇

例如,Transformer 的主要基准测试是 WMT’14,其引用量约为 1300,而 Transformer 的引用量则超过了 16w。上半场是渐进式的方法和模型,下半场则不一样了, 通用训练组合拳能轻松击败渐进式方法,除非你能提出新的假设来打破组合拳,那你就是在做真正改变游戏规则的研究了。一个伟大的新方法可以在许多不同的基准测试中不断改进提升,因为它简单且通用,因此其影响往往超出单个任务。谷歌的软件工程师(SWE)随着对代码库的熟悉程度越来越高,解决 google 问题的能力也越来越强,

2025-07-14 21:55:07 537

原创 网络安全模型-PDR模型工作原理和架构及案例

PDR 模型提供了一个清晰、动态、闭环的安全管理框架,强调安全不仅仅是防御,更是持续监控和快速响应能力的结合。它量化了安全目标(Pt > Dt + Rt)。帮助企业系统性地规划和评估其安全投入,确保在防护、检测、响应三方面取得平衡,避免只重视“筑墙”而忽视“监控”和“灭火”。

2025-07-14 07:06:26 1316

原创 GRU的工作原理和架构

2025-07-14 05:08:07 706

原创 使用 BERT 从 Cyber Threat Report 中自动提取攻击测试流进行上下文分析

大家读完觉得有帮助记得关注和点赞!!!抽象在不断发展的网络安全环境中,快速识别和缓解高级持续性威胁 (APT) 至关重要。安全从业人员依靠详细的威胁报告来了解攻击者采用的策略、技术和程序 (TTP)。但是,从这些报告中手动提取攻击测试流需要难以捉摸的知识,并且非常耗时且容易出错。 本文提出了 FlowGuardian,这是一种利用语言模型(即 BERT)和自然语言处理 (NLP) 技术从非结构化威胁报告自动提取攻击测试流的新型解决方案。FlowGuardian 系统地分析和情境化安全事件,重建攻击序列,然后

2025-07-14 05:06:37 1108

原创 华三防火墙BGP配置及流程图、案例

邻居设计原则EBGP用直连接口,IBGP用Loopback口(提高可靠性)610RR集群内避免全互联,减少会话数1路由策略聚合边缘路由,减少核心设备压力通过MED/Local Preference控制流量路径安全基线启用MD5认证 + AS-Path过滤限制EBGP邻居连接范围(配置清单速查bash# 基础模板bgp 65001peer 202.100.2.1 route-policy SET_MED export # 选路策略通过以上案例及技巧,可覆盖90%企业BGP部署场景。

2025-07-14 05:06:07 800

原创 LNN工作原理和架构

特性LNNCNN时序建模✅ 动态适应非平稳数据⚠️ 依赖固定权重❌ 不支持计算效率✅ 小模型处理长序列❌ 长上下文显存开销大✅ 静态任务快可解释性✅ 神经路径可视化❌ 黑盒决策⚠️ 部分可解释持续学习✅ 推理阶段自适应❌ 训练后参数固定❌LNN 通过微分方程驱动的动态架构,在机器人控制、实时预测等场景展现不可替代性。随着 ODE 求解优化与硬件加速(如神经形态芯片)的发展,LNN 或将成为边缘 AI 的关键支柱610。

2025-07-14 05:05:47 690

原创 神经网络架构分类及代表模型有哪些?

架构类型核心优势大模型代表趋势全局依赖建模 + 并行训练持续主导文本/多模态任务MoE万亿参数扩展 + 高效推理成为大模型规模化首选方案SSM(Mamba)线性复杂度长序列处理Mamba-3B挑战Transformer霸主地位多模态融合统一表征学习通用人工智能(AGI)核心路径(如Mixtral)成为开源大模型主流架构,而视觉任务中CNN-ViT混合体(如ConvNeXt)仍是高效解决方案。掌握架构演进逻辑(如从密集到稀疏、从注意力到SSM),是理解大模型技术生态的关键。

2025-07-14 05:05:27 774

原创 WAF工作原理和架构

WAF通过“检测-分析-响应”闭环保障Web安全,其架构需平衡防护深度(如支持HTTPS解密)、性能影响(低延迟设计)及运维复杂度(规则更新/日志分析)。选型时需结合业务需求:中小业务首选云WAF(低成本、易管理)210;大型或敏感业务推荐混合架构(如云WAF+模块化WAF)9。随着攻击手段演进,WAF正从“规则驱动”转向“智能驱动”,AI与威胁情报的融合将成关键突破点。

2025-07-14 05:05:17 872

原创 IoT 网络中零日威胁的混合 LLM 增强型入侵检测

大家读完觉得有帮助记得关注和点赞!!!抽象本文通过将传统的基于签名的方法与 GPT-2 大型语言模型 (LLM) 的上下文理解功能相结合,提出了一种新的入侵检测方法。随着网络威胁变得越来越复杂,尤其是在分布式、异构和资源受限的环境中,例如由物联网 (IoT) 支持的环境中,对动态和自适应入侵检测系统 (IDS) 的需求变得越来越迫切。虽然传统方法在检测已知威胁方面仍然有效,但它们通常无法识别新的和不断发展的攻击模式。相比之下,GPT-2 擅长处理非结构化数据和识别复杂的语义关系,使其非常适合发现微妙的零日攻

2025-07-13 10:14:09 301

原创 网络安全-STRIDE模型 原理和架构及案例

STRIDE模型通过六维威胁解构与设计阶段介入云服务(Azure):从源头阻断配置错误导致的数据泄露;支付系统(支付宝):双重防护交易篡改与抵赖;车联网(特斯拉):硬件隔离扼杀权限提升路径。核心趋势开发左移:STRIDE威胁分析嵌入DevOps流水线(如IriusRisk自动生成防护代码);跨模型融合:STRIDE威胁映射ATT&CK技术(如“权限提升”对应ATT&CK TA0004)。实践提示优先解决高DREAD分威胁(如权限提升);结合攻击树模型细化复杂威胁路径(如“从欺骗到权限提升”的连锁攻击)。

2025-07-13 10:13:44 374

原创 全流量的工作原理和架构及案例

全流量分析通过“全息采集-深度解析-动态预测”原理创新:旁路镜像零侵扰、DPI/DFI双引擎穿透加密流量18;架构优势:分层处理亿级EPS数据,秒级指标驱动主动运维45;业务价值:金融故障定位效率↑300%、交通流量预测精度↑90%、多云容灾切换<50ms310。实践提示:企业应从核心业务区试点(如支付系统),优先部署流量探针与短期预测模块;避免忽视加密流量协同解密,导致检测盲区。

2025-07-13 10:13:20 328

原创 网络安全产品有整理统计

UTM(深信服)+ DLP(Ping32) + 终端防护(Bitdefender)。

2025-07-13 10:12:49 343

原创 Sqlmap注入工作原理和架构

SQLmap 通过高度自动化和智能化的流程,模拟并大大加速了 SQL 注入漏洞的发现和利用过程。其模块化架构围绕着核心引擎,通过专门的模块处理不同的注入技术、数据库系统、payload 生成、结果解析、通信和规避。这种设计使其成为渗透测试人员和 Web 安全研究人员手中极其强大和灵活的工具。理解其工作原理有助于更有效地利用其能力,并认识到防御此类自动化攻击的重要性。使用时请务必遵守法律法规,仅用于授权的安全测试。🔐。

2025-07-13 00:02:16 531

原创 ARP欺骗工作原理和架构

攻击本质利用ARP协议无认证缺陷,通过伪造IP-MAC映射劫持流量。架构关键点双向欺骗实现全流量监听IP转发维持连接隐蔽性持续投毒对抗ARP缓存更新防御铁三角终端静态绑定 + 交换机安全特性(DAI/Snooping) + 流量加密演进趋势防御方需结合加密通信普及(如QUIC协议)和AI异常检测(分析ARP包时序特征)应对高级攻击。⚠️ 注:ARP欺骗是局域网安全的“地基级”威胁,防护需覆盖网络设备配置终端策略加密应用三层体系。

2025-07-13 00:02:04 894

原创 cbaltStrike工作原理和架构

优势✅ 高度可定制化(Malleable C2、UDRL)✅ 多阶段载荷分离(降低单点检测率)✅ 完善的团队协作与后渗透模块(端口转发、凭证窃取等)59。对抗演进➠ 从静态特征检测 → 转向行为分析(如周期性心跳、异常进程注入)➠ 结合AI分析流量时序特征,识别伪装流量9。防御方需构建“流量+终端+情报”联动的检测体系,重点关注低频率加密通信和无文件加载行为,方能有效对抗CobaltStrike的高级威胁。

2025-07-13 00:01:54 311 1

原创 CTF工作原理和架构

动态积分与多模式设计精准反映选手能力层次6。

2025-07-13 00:01:45 921

原创 DNS分析的工作原理和架构及案例

DNS(Domain Name System)分析是通过解析域名与IP地址的映射关系,挖掘网络资产和威胁情报的关键技术。该技术体系正在向智能化、加密化、分布式方向演进,成为网络空间测绘和威胁狩猎的基础设施。alert dns $HOME_NET any -> any any (msg:"DNS隧道可疑请求";服务器依次向根域名服务器→顶级域服务器→权威服务器发起迭代查询。客户端向递归DNS服务器(如8.8.8.8)发起查询。

2025-07-13 00:01:36 344

原创 华三防火墙RIP配置及流程、案例

网络设计原则仅用于小型网络(跳数≤15)避免在>3台设备的链状拓扑中使用(易产生环路)安全基线必配接口MD5认证(防路由欺骗)使用控制路由收发高可用替代方案中型网络迁移至OSPF保留RIP仅用于接入老旧设备配置清单速查# 基础安全模板rip 1version 2。

2025-07-12 13:31:09 329

原创 华三防火墙配置物理子接口配置及原理、流程、案例

设计规范命名规则:子接口编号 = VLAN ID(如.10对应 VLAN 10)IP规划:网关IP末位统一用.254(如安全基线必配:子接口绑定安全域 + 最小化安全策略禁用:未使用的子接口执行shutdown性能优化大流量场景启用硬件加速避免超过物理接口带宽:单个万兆口建议 ≤8 个子接口配置清单模板# 基础子接口配置# 高级VRF隔离。

2025-07-12 13:30:56 300

基于深度感知协作促进网络的单幅图像去雾方法

内容概要:本文提出了一种双任务交互协同提升框架(DIACMPN),用于解决单幅图像去雾的问题。该方法不仅提升了去雾性能,而且通过深度感知机制促进了去雾和深度估计之间的互惠合作。具体而言,作者通过将深度图差分感知集成到模型中,实现了非理想区域的关注引导和改进。实验证明该方法比现有最佳方法表现更优。为了进一步优化,引入了差异感知机制以增强两个任务间的反馈和优化。 适用人群:主要适用于具有图像处理和深度学习背景的研究人员和技术开发者。 使用场景及目标:①研究人员需要一种创新的技术来提高单图像去雾的效果;②工程应用中有高精度去雾和深度估计的需求。 其他说明:本论文详细讨论了大气散射模型对传统去雾方法的影响及其局限,并介绍了一个有效的端到端学习框架——DIACMPN,利用卷积神经网络进行联合训练和推理,在真实世界的复杂环境中展示了卓越的表现。此外还提供了源代码供实验复制与二次开发。

2025-01-18

显微图像散焦去模糊技术的新突破:基于多金字塔Transformer与对比学习的方法及其应用

内容概要:本文介绍了一种用于解决显微镜图像散焦去模糊挑战的一体化框架,包括多金字塔Transformer(MPT)和扩展频率对比正则化(EFCR)。MPT采用跨尺度窗口注意力机制和通道注意力机制,并通过特征增强前馈网络进行聚合,适应较长关注范围。EFCR利用对比学习方法解决了数据不足的问题,并支持跨域去模糊知识迁移,从而提升了去模糊模型对不同类型的图像数据的应用效果。大量的实验表明,这种方法不仅能够提升监督下和无监督下的去模糊性能,还适用于手术和细胞显微成像等多个领域。 适合人群:对深度学习、计算机视觉领域的显微镜图像处理技术有研究兴趣的研究人员和学生。 使用场景及目标:主要针对显微图像中的散焦去模糊问题,提供高质量的复原工具。适用于显微镜图像去模糊的研究与工业应用场景中,如医学病理检测、细胞生物科学等领域。此外,也可以辅助改进现有医学影像识别系统的效果。通过提高去模糊后的图像质量,在临床应用中可以更好地进行后续任务,比如提高分割精度或改善视觉效果。 其他说明:项目页面位于 https://github.com/PieceZhang/MPT-CataBlur 提供了相关代码和数据集。该论文发表于arXiv:2403.02611v3。并收集了第一个可用于手术显微镜散焦去模糊的数据集—白内障手术。

2025-01-18

图像去模糊领域的可逆解码器AdaRevD探索编码不足的性能极限并提供适应性补丁退出机制

内容概要:本文介绍了 AdaRevD (Adaptive Patch Exiting Reversible Decoder),一种用于增强图像去模糊网络(如NAFNet 和 UFPNet)的新型多子解码器架构。为解决现有方法因轻量化解码器限制了模型性能这一瓶颈,提出了一种可逆结构和适应性退出分类器。论文详细阐述了 AdaRevD 设计背后的动机与创新点:包括重构训练后的编码权重来扩大单一解码器的容量,并保持低显存消耗的能力。该模型在多尺度特征分离方面表现优异,能从低层次到高层次逐渐提取模糊信息,还特别加入了一个自适应分类器来判断输入模糊块的程度,使其可以根据预测的结果提前在特定子解码层退出以加快速度。实验表明,在GoPro数据集上达到了平均峰值信噪比 (PSNR) 的提升。此外,通过对不同子解码器输出之间的比较发现,不同退化程度的模糊区块有不同的修复难易程度,验证了AdaRevD对于不同模糊级别的有效性和高效性。 适用人群:适用于对深度学习和图像恢复有一定认识的专业人士和技术研究人员。对于那些关注提高图像处理效率、改进现有去模糊技术和追求高性能GPU利用率的研究人员尤为有用。

2025-01-18

基于扩散模型的动态场景图像去模糊增强方法:ID-Blau

内容概要:本文提出了一种名为ID-Blau(Implicit Diffusion-based reBLurring AUgmentation)的方法,用于改进图像去模糊性能。传统的图像去模糊方法虽然已在网络架构设计上取得进展,但缺乏有效的数据增强手段。ID-Blau通过模拟连续空间中的运动轨迹来生成多样的模糊条件图谱,并与清晰图像配对以合成训练样本,从而大大丰富了训练集。通过实验验证,ID-Blau能显著提升现有顶级去模糊模型的表现。 适合人群:计算机视觉领域的研究者和技术人员,尤其是从事图像去模糊方向的专业人士。 使用场景及目标:ID-Blau旨在为现有的图像去模糊模型提供高质量的数据增强工具,提高去模糊精度并应对现实世界的挑战。主要应用领域包括自动摄影修正、视频后期制作以及需要高质量静态图像的应用。 其他说明:该方法利用卷积神经网络(CNN)、Transformer及其他现代视觉处理技术,特别是在扩散模型基础上进行改进,使其不仅能够生成逼真的模糊效果,还能保持较强的可控性和鲁棒性。

2025-01-18

图像去雾领域的正交解耦对比正则化方法研究及其无监督学习应用

内容概要:本文提出了一种新的用于无配对图像去雾(UID)的方法——正交解耦对比正则化(ODCR)。该方法基于将图像特征分解为与雾霾相关和不相关的两个部分,在此基础上利用自监督学习进行去雾,以最大化不同特征空间中查询补丁与其阳性样本组件之间的相互信息,从而提高去雾效果。具体方法中包含了引入正交多层感知机(O-MLP)、深度特征分类器(DWFC),以及加权PatchNCE损失函数。这些技术手段旨在降低特征间的关联度、区分雾霾相关和不相关信息,并最终增强生成去雾图像与原清晰图像间对应成分的一致性和去噪效果。 适用人群:计算机视觉领域研究人员和开发者,尤其是关注去雾技术和深度学习模型优化的工作者。 使用场景及目标:针对无配对数据集中模糊或受环境光散射现象干扰影响严重但难以收集到精确匹配的干净图像的情况下,ODCR能够在缺少直接对照的情况下有效完成高质量的图像还原任务,有助于改善后续视觉任务的质量。

2025-01-18

计算机视觉领域中基于CLIP模型的语言驱动双像素图像散焦去模糊网络

内容概要:本文提出了一个名为LDP(Language-driven DP)的新框架,旨在利用预训练的对比语言-图像模型CLIP来估计双像素(DP)图像对的模糊图,从而实现高质量的无监督去模糊任务。研究解决了以往需要额外数据进行监督的问题,首次通过文本提示引导CLIP来估计模糊程度并应用自定义格式处理立体图像对,进一步提出了三种损失函数和一个先验注意力模块以确保恢复图像的质量。该方法通过广泛的实验验证,在标准测试集上取得了当前最优性能。 适合人群:计算机视觉研究人员以及从事深度学习和图像处理的技术人员。 使用场景及目标:用于从具有视差相关模糊问题的双像素传感器获取到的图片对恢复清晰的全焦点图片,尤其适用于单张拍摄情况下的图像修复工作。此外,该研究可以推动更多利用大规模预训练视觉语言模型应用于低级视觉任务的可能性。 其他说明:文中还提供了详细的实证比较和其他现有方法的优势分析,证明了所提出的架构能够提高去模糊效果的同时显著降低了推理时间。同时给出了模型的不同组件及其损失设置的消融实验细节与模型局限性的探讨,补充材料中有更深入的具体实验参数介绍及更多的定性和定量评估。

2025-01-18

事件相机低照度场景下时间延迟校正及其对去模糊和帧插值的影响(CVPR 2024)

内容概要:本文提出了一种针对事件相机中延迟进行纠正的方法,并研究了其对去模糊和帧插值任务的影响。通过引入基于延迟校正的不同积分模型并将其参数化为光强度的多项式关系曲线,该方法能够显著提高图像重建效果,在复杂光照条件下提升图像质量和边缘锐度。作者提出了一个数据驱动的时间滞后校正方法来估计和优化从事件相机获得的事件流中出现的实际响应时间和记录时间之间的不匹配。此外,文中介绍了在合成与真实数据集上的实验验证以及与其他现有去模糊与帧插值算法性能对比的情况,证明了所提方法的优势。 适合人群:计算机视觉研究人员、图像处理工程师和技术开发者;对事件相机感兴趣的研究人员。 使用场景及目标:适用于涉及运动物体成像的应用场合,尤其是在弱光源环境中进行精确的时间敏感型图像处理,如自动驾驶车辆、机器人视觉等领域。本研究成果可以帮助改进动态环境下视频捕捉装置的工作效能和服务质量。 其他说明:虽然该论文主要关注特定型号(如DAVIS346Mono)的设备实现细节,但所提供的理论框架对于未来相关领域的扩展和应用具有重要意义。同时指出了一些局限性和进一步探索的方向,包括不同传感器特性下滞后曲线变化情况等问题。

2025-01-18

计算机视觉领域的无监督图像去模糊方法Blur2Blur的创新框架及其实现

内容概要:本文提出了一种名为Blur2Blur的创新型框架,旨在为特定摄像设备训练一种图像去模糊算法。这种方法不直接将模糊图片转换成清晰图片,而是先将未知模糊图片转化为已知类型的模糊图片,再利用现有模型进行去模糊。这种方法的优势在于只需用到未配对的数据即可有效处理复杂的实际世界运动模糊现象。文章详细描述了Blur2Blur的方法论,以及用于训练网络的各种损失函数(如对抗损失和重建损失)。同时作者还展示了该方法与预训练模型相结合后的显著性能提升,在多种数据集上取得了优于传统和其他先进方法的效果。为了验证Blur2Blur的有效性和实用性,进行了广泛的实验并给出了定性的对比图和PSNR分数评价指标等客观数值。 适合人群:从事计算机视觉相关工作的研究人员和技术开发者,特别是关注图像处理领域的工作者。 使用场景及目标:①适用于需要解决真实环境中相机拍摄照片因各种因素导致的画面模糊的问题的企业和个人;②针对不同品牌和型号摄像头定制化去模糊解决方案。

2025-01-18

计算机视觉中基于自增强的无监督盲图像去模糊技术研究与应用进展

内容概要:本文提出了一种新颖的基于自增强(self-enhancement)的无监督盲图像去模糊框架,专门针对缺乏成对真实数据集的情况而设计。该框架利用多个生成器合成了高质量的伪锐利和模糊图对,并引入了再退化主成分一致性损失来确保合成的低质量图像的主成分与原始锐利图像重新退化的主成分相似,从而减少噪声干扰并使合成图与实际数据更加贴近。此外,本文还提出了不影响网络推理计算复杂度的渐进式改进方法。实验证明该方法显著超越了现有最先进的无监督方法。 适用人群:从事计算机视觉、图像处理以及深度学习领域的研究人员和技术专家。 使用场景及目标:适用于需要从模糊图片恢复清晰图像但难以获取训练所需的真实配对样本的应用场合;主要目的是探索提升模型泛化性能的新途径,并克服监督学习中数据不足的问题。 其他说明:研究结果发表于CVPR 2024,在多个真实的模糊数据集上进行了广泛的测试对比实验。作者来自四川大学电子信息技术工程学院。文中详细讨论了几何增广方法和提出的自增强策略之间的区别和优劣势,同时展示了不同重建器采用自增强策略后的改进效果。

2025-01-18

大型语言模型综述:大规模预训练模型的发展、应用与挑战

内容概要:本文详细回顾了从统计语言模型到神经语言模型,再到大型语言模型(LLM)的技术演进。随着参数规模的增大,LLM表现出更强的语言理解和生成能力,能够完成诸如零样本学习和多任务学习在内的复杂自然语言处理任务。此外,文中还讨论了几种关键的分词技术和数据集格式化方法,如Byte-Pair Encoding、WordPiece以及通过人类编写的任务描述来优化指令调优。最后,介绍了ChatGPT的成功案例和技术实现路径,展示了大型语言模型的强大潜力及其面临的挑战。 适用人群:对深度学习、自然语言处理感兴趣的科研工作者、工程师及学生。 使用场景及目标:帮助读者理解大规模预训练语言模型的基本原理和发展趋势;介绍LLM的最佳实践和技术细节,为实际项目提供理论支持和技术指导。 其他说明:文档还涉及到了Prompt优化技巧、强化学习用于优化离散提示的方法等内容。这对于提高基于Transformer架构构建的应用程序性能具有重要指导意义。

2025-01-18

卷积深度信念网络在无监督层次化图像表示学习中的应用

内容概要:本文介绍了卷积深度信念网络(CDBN),一种用于无监督学习大规模高维图像数据的分层生成模型。CDBN引入了概率最大池化(probabilistic max-pooling)机制,使得模型能够处理全尺寸图像并进行自底向上和自顶向下的推理。实验表明,该模型从无标签图像中学到了有用的高层视觉特征,如物体部分,并在多个视觉识别任务上表现优异。 适合人群:对机器学习特别是深度学习、神经网络感兴趣的研究人员和技术人员。 使用场景及目标:该方法适用于需要无监督学习复杂、高维数据集的情况,尤其是当研究对象涉及图像分类或其他视觉识别任务时。 其他说明:CDBN相比传统DBN解决了扩展到现实世界图像大小的问题,且支持翻译不变性的高效双向推理,这对于增强图像理解和特征提取有重要意义。

2025-01-18

GB 17859-1999 计算机信息系统安全保护划分准则

GB 17859-1999 计算机信息系统安全保护划分准则

2025-01-17

linux日常应用总结

linux日常应用总结,主要是生活中遇到的问题可以及时的解决

2012-07-18

2023年最新版kali linux安装教程

2023年最新版kali linux安装教程

2023-12-24

常用测试,研发,产品文档格式编写规范

常用测试,研发,产品文档格式编写规范

2023-09-04

win10开机自动启动

win10 开启自动系统设置过程,设置过程注意设置的路径

2017-11-27

日志服务器

此工具是为了查看日志,在window系统下安装的工具,可以方便用户定位

2018-01-25

EFormer:增强型Transformer用于前景语义与轮廓特征的人像抠图研究及其实现

卷积神经网络(CNN)难以捕捉远距离依赖性和复杂的全局信息,Vision Transformer虽然在低频成分提取上表现出色,但对于高频信息的处理存在明显不足。为解决此问题,论文创新地使用了跨分辨率交叉注意力模块,并建立了语义轮廓检测器(SCD),以及分别设计了边缘提取分支(CEEB)和语义抽取分支(SEB),确保同时优化两个层面的内容表示能力。实验结果显示EFormer显著提升了对复杂背景条件下的人脸边界及细节点位的精确度,相比以往模型实现了性能超越。此外,EFormer不需要预设参数即可达到良好的适应性和稳定性。 适合人群:计算机视觉、机器学习领域的研究人员,特别是从事图像分割、深度估计等相关工作的专业人士。 使用场景及目标:① 适用于需要高精度分离主体对象与背景区别的应用场景,如影视特效制作、社交媒体平台的内容编辑工具、智能相册应用等领域;② 提升模型对高频细节(比如头发丝边缘)的捕捉精度和鲁棒性;③ 推动未来研究方向的发展,在此基础上可以进一步探索更多种类的任务处理方式。

2025-02-13

视频实例分割的创新方法-无监督VideoCutLER算法的研究与应用

内容概要:本文介绍了名为VideoCutLER的创新无监督多实例视频分割算法。研究指出,现有的无监督视频实例分割通常依靠光学流估计进行运动估计,在面对遮挡、光照变化等情况时性能不佳。为解决这一问题,作者提出了一种简单的基于剪辑合成与训练(cut-synthesis-and-leearn)的管道模型。这个流程包括三个关键步骤:首先,利用MaskCut从未标注图像中生成多个对象伪掩膜;其次,使用ImageCut2Video将一批未标记图片转换成带有关联轨迹的合成视频;最后用伪轨迹对一个无监督的视频分割模型进行训练。该模型仅依赖无标签图片即可学习并执行视频实例分割任务,实现了比现有最优解更好的效果。实验结果显示了其卓越的表现以及强大的泛化能力。 适合人群:从事计算机视觉及相关领域的研究人员和技术从业者,特别是在深度学习应用于视频分析方面有一定经验的基础研究人员或高级技术人员。

2025-02-13

室内环境无监督3D实例分割方法UnScene3D的技术实现与应用

内容概要:本文介绍了名为UnScene3D的新方法,用于解决无需人工标注即可对复杂室内的3D点云数据进行对象实例分割的问题。作者提出了基于伪掩膜生成与自训练迭代的方法,有效利用自我监督颜色和几何特征生成稀疏的初始伪实例掩膜,并通过模型自训练逐步提高精度和密实度,最终实现在无手动注释下高效而准确地识别3D物体并给出完整的实例分割。实验表明,该算法相比已有的无监督和弱监督3D分割方法有着更高的精确率。 适用人群:计算机视觉领域研究者和从业者、自动驾驶以及机器人导航研究人员。 使用场景及目标:主要针对RGB-D相机采集的真实世界三维点云计算设备,适用于需要从复杂且凌乱的场景中提取特定个体的任务,如机器人视觉系统构建。该工具的目标是从未标记的数据集中识别独立的对象实例并且为其绘制边界框。 其他说明:UnScene3D采用了一种新颖的基于几何先验和多模态特征的伪遮罩生成技术和一种有效的自监督框架来进行密集预测。

2025-01-22

视频对象分割领域的引导槽注意力机制及其应用

内容概要:论文提出了一种新型的引导槽注意力(Guided Slot Attention, GSA)网络用于无监督视频对象分割任务,旨在复杂背景下更好地分离前景与背景并提高特征提取能力。具体而言,模型引入了引导槽、特征聚合转换器(Feature Aggregation Transformer,FAT)以及K近邻过滤算法,利用局部和全局特征进行迭代调整,最终生成更精准的分割掩模。此外,在DAVIS-16和FBMS两个知名数据集上进行了大量实验,证明了提出的GSA网络优于现有方法并在多物体视频中表现稳健。 适合人群:计算机视觉、机器学习的研究人员和技术爱好者,对视频对象分割感兴趣的开发者。 使用场景及目标:适用于各种需要高质量无监督视频对象分割的应用场合,如自动驾驶系统中的障碍物检测、医疗影像分析等领域;主要目的是改进复杂场景下前景背景的有效区分,增强识别精度。 其他说明:研究团队来自延世大学,相关代码已经开源发布于GitHub平台上。该研究得到韩国政府信息技术规划评估研究所(IITP)的资金支持,并被收录进多个顶级国际会议和期刊中。

2025-01-22

无监督视频对象分割领域的跨模态与帧间注意力机制研究及其应用

内容概要:本文提出了一种新的无监督视频对象分割(unsupervised VOS)方法——双原型注意力机制(Dual Prototype Attention),即IMA(跨模态注意模块)和IFA(帧间注意模块)。这些机制分别解决了现有多模态融合和时间聚集方法中存在的鲁棒性和计算效率等问题,显著提高了在多个公开基准数据集上的表现。此外,论文还探讨了原型嵌入对性能的影响并对其进行了验证。 适合人群:对视频处理特别是无监督视频对象分割领域感兴趣的计算机视觉研究员和技术开发者。 使用场景及目标:适用于各种需要进行高质量自动图像或视频内容分析的应用环境,如智能监控、增强现实、自动驾驶等领域。具体的目标是提高模型识别最突出物体时的精度以及稳定性,即使遇到遮挡或者复杂背景也能有效运作。 阅读建议:本篇文献提供了详尽的技术细节和支持性实验结果来展示所提出的DPA方法优越之处。因此,在理解和评估该研究成果的基础上可以深入了解如何利用注意力机制提升深度学习模型的效果,尤其是对于涉及时间和空间维度的数据处理任务非常有价值。

2025-01-22

深度混合专家语言模型DeepSeek-V3的技术报告:高效推理与经济训练实现

内容概要:本文介绍了大型混合专家(MoE)语言模型DeepSeek-V3的技术报告。DeepSeek-V3拥有总计671亿参数,在每个令牌激活约37亿参数,采用Multi-head Latent Attention (MLA)架构和DeepSeekMoE架构确保高效的推理和成本效益的训练。为优化推理和成本有效训练,DeepSeek-V3还引入了无辅助损失策略用于负载均衡以及多令牌预测训练目标,旨在增强性能。同时文中讨论了预训练、后训练阶段,及其硬件部署策略,并展示了全面评估表明DeepSeek-V3相较于其他开源模型表现更为优秀且与顶级闭源模型媲美。 适用人群:具备一定深度学习和自然语言处理基础知识的研发人员和技术爱好者。 使用场景及目标:①探讨最新的深度学习优化技术和大规模语言模型的设计;②理解高效率的语言模型训练框架及其经济性;③学习先进模型在不同任务基准测试上的实际应用表现。 其他说明:该研究致力于推动开源模型在性能和实用性方面的边界拓展,并为研究人员提供了新的研究方向和发展路径。尽管其性能出色,但其部署规模较大可能对小型团队带来负担。未来的改进将依赖于更先进的硬件发展来进一步提升速度并降低成本。此外,文章强调该系列持续关注开放源码长远发展模式,逐步接近人工通用智能(AGI)这一最终目标。

2025-01-18

基于等变变换改善图像重建的插件与即用(Plug-and-Play)算法稳定性研究

内容概要:本文主要探讨了将等变属性引入插件与即用(Plug-and-Play,PnP)算法,特别是应用于图像重建中的效果提升方法。具体来说,在解决逆向成像问题时,通过随机应用变换及其逆操作于图像降噪器输入输出的方式对降噪器施加约束。该方法不仅可以减少由隐含先验模型所导致的算法不稳定性及次优解情况,而且能显著提高重建质量与稳定性。同时,文章从理论角度分析并解释了这一现象产生的原因,指出通过这种机制能够更好地保持隐含图像先验的一致性和鲁棒性,并进行了大量实验来验证这一点的有效性。 适用人群:从事机器视觉和深度学习方向的研究人员以及开发者们。这些人通常需要构建高质量和高效的算法用于解决如医学成像、遥感影像处理等各种实际场景。 使用场景及目标:①改进现有插件与即用框架的稳定性和效率,确保各种情况下都能获得良好性能;②增强基于不同模态(例如CT扫描、MRI等)数据的应用系统的泛化能力;③推动相关领域的学术研究和技术进步,促进更多创新成果出现。 其他说明:尽管该研究所提出的方法在很大程度上优化了算法的表现,但在某些特定配置下依然可能出现分歧或幻影伪迹。因此,在实践中仍需谨慎评估选择是否采用这种方法论并进行充分测试验证。此外,本项目得到了多项资助支持,并利用IDRIS提供的高性能计算资源完成部分计算任务。

2025-01-18

残差去噪扩散模型(RDDM):图像生成与修复任务中的双扩散框架及其应用

内容概要:本文提出了一种名为残差去噪扩散模型(RDDM)的新方法。这一框架将传统的单向去噪扩散过程解耦为残差扩散和噪声扩散两个部分,从而扩展了原始的基于去噪的扩散模型到统一并具解释性的模型上,能够同时应用于图像生成与修复任务。通过在实验中引入残差表示目标图到退化输入之间的有方向转换,明确指导逆向生成用于图像恢复,而噪声则侧重随机扰动增加变化度。文中探讨了多种采样方式,并证明其一致性以及优于现有去噪模型的表现能力。 适合人群:从事图像处理的研究员和技术人员,对深度学习中的生成对抗网络、自编码器、变分推理等领域有一定背景的知识工作者。 使用场景及目标:适用于需要高质量图像生成或修复的应用场合,如去除阴影、低光照增强、消雨、图像插值等。RDDM提供了解决这些任务的有效工具,能够在保持高视觉效果的同时减少计算复杂性和提高训练效率。 其他说明:作者提供了开源代码和预训练好的模型来促进进一步探索与发展该创新性框架(网址见论文)。此外,研究发现不同的采样步骤会影响最终生成的质量,并提出了一些优化系数安排的方法。对于未见过的任务,则建议通过自动选择最佳抽样机制来达到理想的效果。

2025-01-18

源自由无监督领域适应语义分割中的稳定邻居去噪算法(CVPR 2024)

内容概要:这篇论文提出了一种新颖的方法——稳定邻居去噪(Stable Neighbor Denoising, SND),针对无源无监督领域适应(Source-Free Unsupervised Domain Adaptation, SFUDA)中的伪标签噪声问题。SFUDA旨在将已训练于源数据集的模型适配到目标域而无需访问源数据。现有的自训练方法虽然广泛应用但缺乏有效的去噪机制,在跨域任务中容易陷入偏差估计。SND利用样本的稳定性评估筛选稳定与不稳定样本,再结合双层优化策略和分类补偿来减少偏置并提高去噪能力,使得伪标签更加可靠。实验表明,相较于现有最先进方法,无论是在单域还是多域任务上,SND均表现出了更强的表现力,尤其是在复杂环境下也能有效地应对噪声,缓解确认偏差。SND还能够方便地与其他方法集成进一步提升效果。 适用人群:对无监督领域适应及其应用于图像语义分割感兴趣的学者以及相关行业的高级研究和技术人员。 使用场景及目标:① 需要在不同天气条件或其他环境变化条件下保持良好性能的视觉识别系统;② 多源数据整合或开放复杂环境中进行图像语义分割的任务。 其他说明:本文所提出的SND算法已经开源,读者可以获取完整代码并在实际项目中试用。同时文中提供了详尽的理论分析及详细的消融实验验证其各个模块的效果,为后续的研究提供有力的支持。

2025-01-18

基于解混扩散模型的自监督高光谱图像去噪技术及其应用(CVPR 2024)

内容概要:这篇论文介绍了名为Diff-Unmix的新颖自监督去噪方法,专为解决高光谱图像(HSI)去噪难题而设计。传统的高光谱图象去噪通常依赖于有监督的方法,但创建涵盖各种场景、摄像头和扫描参数的数据集非常不现实。本文提出的解决方案融合了光谱解混技术和条件概率生成模型来应对这一挑战。文中详细描述了该技术的关键组成部分,如光谱解混网络、Transformer架构以及用于提升丰富度细节保持能力的去噪扩散网络。实验结果显示,与现有最先进水平相比,Diff-Unmix不仅能在仿真噪音条件下提供优秀的视觉效果和量化指标,在真实世界复杂噪声环境中亦表现出色。 适合人群:计算机视觉领域的研究者、遥感科学家及对高光谱影像处理感兴趣的工程师。 使用场景及目标:主要适用于从受污染的高光谱数据中恢复干净图像的任务,尤其是那些难以获得大规模带标签训练样本的应用场景;同时适用于需要提高空间分辨能力和减少噪声干扰的研究工作中。 其他说明:这项技术的优势在于它能够有效地整合物理意义显著的解混操作与强大的神经网络架构,从而克服传统方法中存在的计算效率低下、鲁棒性差等问题,并为进一步优化提供了新的思路方向。

2025-01-18

图像去噪领域的学习适应噪声算法(LAN)以提高对未见过噪声的鲁棒性

内容概要:本文介绍了一种名为 Learning-to-Adapt-Noise(LAN)的新方法,用于解决未知噪声条件下的图像去噪问题。传统深度学习模型尽管在合成数据集上表现良好,但在面对未曾见过的现实世界噪声时性能会显著下降。为此,LAN 提出直接修改输入的噪声分布来弥补新噪声与预训练模型期望噪声之间的差距。通过对每张有噪声图像添加可学习偏移量,使新的噪声向预训练期间看到的噪声靠拢,从而有效提升了针对不可预见噪声的鲁棒性和性能。实验结果表明,在多种不同条件下测试,相较于现有方法如全层可训练自监督学习调整或其他零样本去噪技术,该方案展现了优异的效果。同时探讨了计算效率及理论联系领域内其他相关主题。 适合人群:研究计算机视觉尤其是感兴趣于图像恢复方向的研究人员和高级学生。

2025-01-18

基于盲点去噪的单张真实图像去噪新方法:MASH

内容概要:本文介绍了一种新型的自监督图像去噪方法——MASK和SHUFFLED BLIND SPOT DENOSING(MASH),主要针对单张图像中相关噪声的情况进行优化。 MASh采用了随机屏蔽和局部像素重排的技术来应对高斯噪声中的空间相关性和提升去噪效果,通过对不同屏蔽比与噪声相关性的实验分析确定最佳配置。文章展示了其相对于当前主流的单图像盲区去噪模型有明显的改进,并通过大量实验证明MASH方法能有效处理真实的去噪场景,达到了业内领先水平。 适合人群:对深度学习应用于计算机视觉方向特别是图片去噪研究感兴趣的研究生及以上学者和技术研发人员。 使用场景及目标:此技术适用于处理含有较强噪声的真实世界照片。主要目的在于从带有不同程度空间上相关的实际成像系统输出的数据恢复高质量的原始图样,同时探索了如何利用遮挡比例和局部位移提高图像清理的效果,从而提供一种更为稳健可靠的方法。 其他说明:MASH通过引入本地随机置换技术以及自动选择屏蔽参数,在多个公开数据集上的测试表明它在面对非独立同分布(noise correlation)时优于现有方法。这项工作的亮点在于它不仅限于理论层面,还包括一系列具体的实施细节指导及其实现代码开源网址。这使得后续研究人员可以直接应用并扩展这个创新解决方案来进行更多的探索。

2025-01-18

图像去噪领域的对抗频率混合训练框架(AFMs)改进模型对未知噪声分布的鲁棒性

内容概要:该研究解决了现有基于深度神经网络的图像去噪方法在应对实际世界多变噪声时表现不佳的问题。作者提出了一种新型训练框架——对抗频率混合(Adversarial Frequency Mixup,简称AFM),用以增强模型对于未知真实世界噪声类型的鲁棒性。实验结果显示,在多种真实的噪声基准测试上,经由AFM优化过的去噪网络比未经AFM优化版本显著提高了对新噪声种类适应的能力。 适合人群:主要针对从事计算机视觉与图像处理的研究人员和技术专家;特别是关注于提高算法泛化能力和鲁棒性的研究人员。 使用场景及目标:该方法可以被应用于所有基于深层神经网络的图像去噪任务中,目的是使模型能够在不同条件下(如相机传感器的不同特性或不同的成像信号处理管道)保持高性能的去噪效果,同时减少过拟合现象的发生。这一创新不仅有助于学术研究,也有望推动商业产品和服务的发展。 其他说明:论文还讨论了AFM与其他常见的广义化技术比较优势所在,并强调了维持真实性的重要性,这对于未来探索更好的图像去噪方案有着积极的影响。此外,作者提供了源代码链接以便他人复现实验结果并进一步拓展这项工作的潜力。

2025-01-18

计算机图形学领域的文本驱动3D纹理合成新方法:基于稳定扩散模型的 GenesisTex 技术研究与应用

内容概要:本文介绍了一种名为 GenesisTex 的新型方法,该方法利用预训练图像去噪扩散模型并引入纹理空间采样(texture space sampling)以从文本描述生成高质量的3D物体表面纹理图。该技术解决了现有技术效率低下和效果欠佳的问题,实现了多视角一致性、高分辨率且自然色彩丰富的纹理合成功能,并能在几分钟之内完成。研究通过对多个视角的全局风格一致性和局部细节一致性来确保跨视角约束,并结合了基于参照的修补以及Img2Img进行纹理细化。 适合人群:对3D图形渲染、计算机视觉或机器学习有一定兴趣的研究人员和技术开发者。特别是需要将文字转化为三维物体材质的应用开发商和研究机构。 使用场景及目标:用于提高虚拟现实(VR),增强现实(AR),影视制作等领域内3D资产的质量;同时也适用于游戏、工业设计和其他涉及到三维建模与贴图的任务,能够快速有效地创建符合特定描述的高度逼真的表面纹理。 其他说明:尽管取得了很好的进展但该算法还存在内存消耗较大等问题,在未来工作中作者计划探索更加优化的计算方式如层级样式一致性以减少视点间的注意力机制带来的高额成本。

2025-01-18

移动设备图像去噪领域的大型数据集与高效基准模型-Mobile Image Denoising Dataset (MIDD) 和 SplitterNet 实现

内容概要:本文介绍了面向移动图像去噪任务的大规模数据集(Mobile Image Denoising Dataset, MIDD)及其高效的基线模型 SplitterNet。MIDD 数据集由超过40万对不同光线条件下拍摄的手机动态/静态照片构成,涉及20种不同传感器,并补充了用于精确模型评估的新测试集DPerview。SplitterNet 模型采用创新架构,在保证高精度同时实现了移动端高效推理速度(处理800万像素图片小于一秒),并在多种性能指标上超越先前解决方案。实验证明,训练后的模型在不同摄像头上的泛化能力尤为突出。 适合人群:研究者和技术开发人员,特别是从事图像去噪和深度学习应用于移动平台的研究人员及从业者。 使用场景及目标:本项目主要针对提高智能手机拍照质量的应用场合,旨在为研究人员提供丰富且高质量的真实世界图像样本以及高效的去噪模型,以改善各种环境光线下手机相机捕获的照片品质。具体应用目标涵盖快速在线去噪、多曝光融合增强等多个方面,最终使用户体验得到质变性的提升。

2025-01-18

半监督夜间图像去雾基线模型研究与实现:频谱感知与亮度约束机制(用于深度学习)

内容概要:本文提出了一个针对真实世界夜景图像去雾任务的半监督基线网络 SFSNiD (Spatial-Frequency Aware and Realistic Brightness Constraint for Nighttime Dehazing),并针对夜间雾霾的特点提出了一系列创新性的方法。首先引入了空间与频率域信息交互模块(SFII)来应对局部化、耦合及频谱特性不一致的问题,然后采用基于伪标签的再训练策略以及基于窗口亮度损失的半监督训练方法以达到去雾同时获得真实亮度的效果。此外,实验验证表明提出的模型不仅能够在合成数据集上表现良好,在真实世界数据集上也展现出优势。 适合人群:从事计算机视觉领域的研究人员和技术爱好者,尤其是对图像处理与夜景去雾技术有研究兴趣的人群。 使用场景及目标:适用于开发新的夜间图像去雾算法时,解决现有技术中存在的如光照不足导致的颜色失真、光源多且复杂带来的光影干扰等问题,从而提升夜视图像质量,增强应用场景中的可见度与可用性。 其他说明:作者提供了开源链接https://github.com/Xiaofeng-life/SFSNiD方便研究者下载源代码和补充材料进行进一步的研究和实践操作。

2025-01-18

自监督图像去噪领域的非对称盲点网络(AT-BSN)及其多教师蒸馏方法研究与应用

内容概要:本文探讨了一种用于真实世界自监督去噪任务的新范例——非对称盲点网络(AT-BSN)。作者通过对现有方法的研究指出,在原始分辨率结构下进行训练并在训练和推理过程中采用非对称操作,可以有效提升去噪效果和细节保持。为解决噪声相关性和局部空间结构破坏之间的矛盾,提出的AT-BSN能够灵活调整盲点大小,并结合基于不同盲点采样的多教师蒸馏策略优化小型化模型,大幅提升了性能并降低了计算成本。实验表明,该方法在多个实际数据集上表现优异,不仅胜过现有的同类方法而且能更好地恢复高频纹理特征。 适合人群:计算机视觉专业研究人员和技术开发者,特别是关注图像去噪技术和深度学习算法的人士。 使用场景及目标:主要适用于需要去除含有多尺度空间相关噪声的真实世界图像中噪声的应用场景。旨在通过高效的自监督学习机制提高图像质量的同时尽量减少对原图细节信息的影响。 其他说明:附带了详细的定量实验验证以及与当前最先进的技术对比。补充材料还包括了具体实现细节、复杂度分析和消融实验等进一步的内容。

2025-01-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除