相干信号源数学模型
对两个平稳信号si(t)s_i(t)si(t)和sk(t)s_k(t)sk(t),定义相关系数
信号的相关性定义如下
相干信号源间只差一个复常数,假设有nnn个相干信号源
s0(t)s_0(t)s0(t)称为生成信源,生成了入射到阵列上的nnn个相干信号源。
相干信号源模型:
平滑秩序列法
当信号源相干时,估计信号源数。
对于独立信号的分辨能力,阵元数M应大于独立源数,即M≥K+1M\geq K+1M≥K+1;对于前向/后向空间平滑法,应满足M≥K+J1M\geq K+J_1M≥K+J1,KKK是总源数,J1J_1J1是相关源数目,对于双向平滑算法,应满足M≥K+12J1M\geq K+\frac{1}{2}J_1M≥K+21J1。
设R0\bm{R}_0R0是M×MM×MM×M维矩阵,kkk是正整数,定义一个(M−k)×M(M-k)×M(M−k)×M维矩阵IM−K\bm{I}_{M-K}IM−K
将R0\bm{R}_0R0分成交叉重叠矩阵{
R0(i)}i=1M−1\{\bm{R}_0^{(i)}\}_{i=1}^{M-1}{
R0(i)}i=1M−1
信号源由LLL组相关源的群组成,表示为gig_igi,如i=1i=1i=1表示单个独立信号,i=3i=3i=3表示有三个相干源,LLL是最大的相关源数,g2=3g_2=3g2=3表示有三个相关群,每个群有2个相干源,相关群总数为
总信号源数为
从有限次快拍的数据中获得数据协方差矩阵,此时
而R(k)^\hat{\bm{R}^{(k)}}R(k)^的信号子空间维数就是R0(k)^\hat{\bm{R}_0^{(k)}}R0(k)^的秩,故平滑秩序列为
根据MDL准则
双向平滑秩序列
平滑秩算法
1.k=0k=0k=0
2.MDL准则求R0(k)^\hat{\bm{R}_0^{(k)}}