关于相干信号的阵列处理

本文详细介绍了相干信号源的数学模型,包括平滑秩算法、波束形成最优权、空间平滑算法以及MVDR波束形成器的应用。重点讨论了在相干信号源情况下的阵列数据处理,如Toeplitz矩阵和矩阵重构在信号子空间恢复中的作用,以及在多信号源环境中的MVDR波束形成仿真结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相干信号源数学模型

对两个平稳信号si(t)s_i(t)si(t)sk(t)s_k(t)sk(t),定义相关系数
在这里插入图片描述

信号的相关性定义如下
在这里插入图片描述

相干信号源间只差一个复常数,假设有nnn个相干信号源
在这里插入图片描述

s0(t)s_0(t)s0(t)称为生成信源,生成了入射到阵列上的nnn个相干信号源。
相干信号源模型:
在这里插入图片描述

平滑秩序列法

当信号源相干时,估计信号源数。
对于独立信号的分辨能力,阵元数M应大于独立源数,即M≥K+1M\geq K+1MK+1;对于前向/后向空间平滑法,应满足M≥K+J1M\geq K+J_1MK+J1KKK是总源数,J1J_1J1是相关源数目,对于双向平滑算法,应满足M≥K+12J1M\geq K+\frac{1}{2}J_1MK+21J1
R0\bm{R}_0R0M×MM×MM×M维矩阵,kkk是正整数,定义一个(M−k)×M(M-k)×M(Mk)×M维矩阵IM−K\bm{I}_{M-K}IMK
在这里插入图片描述

R0\bm{R}_0R0分成交叉重叠矩阵{ R0(i)}i=1M−1\{\bm{R}_0^{(i)}\}_{i=1}^{M-1}{ R0(i)}i=1M1
在这里插入图片描述

信号源由LLL组相关源的群组成,表示为gig_igi,如i=1i=1i=1表示单个独立信号,i=3i=3i=3表示有三个相干源,LLL是最大的相关源数,g2=3g_2=3g2=3表示有三个相关群,每个群有2个相干源,相关群总数为在这里插入图片描述

总信号源数为在这里插入图片描述

从有限次快拍的数据中获得数据协方差矩阵,此时在这里插入图片描述

R(k)^\hat{\bm{R}^{(k)}}R(k)^的信号子空间维数就是R0(k)^\hat{\bm{R}_0^{(k)}}R0(k)^的秩,故平滑秩序列为在这里插入图片描述

根据MDL准则
在这里插入图片描述

双向平滑秩序列在这里插入图片描述

平滑秩算法

1.k=0k=0k=0
2.MDL准则求R0(k)^\hat{\bm{R}_0^{(k)}}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值