视频演示
创建 Pandas Series 对象的N种方法
第一部分:认识 Series —— 数据分析的好帮手
在数据分析中,一维数据的处理经常令人感到繁琐,特别是当你刚开始使用 Python 进行数据处理时。不过,Pandas 库中的 `Series` 对象为我们提供了极大的便利。它是 Pandas 提供的一种一维数据结构,你可以将其类比为 Excel 表格中的一列,既可以存储数据,也可以自定义索引,既灵活又强大。
第二部分:从列表创建 Series —— 基础操作讲解
使用 Pandas 创建 `Series` 对象非常简单。首先,我们需要导入 pandas 库:
import pandas as pd
接着,假设你有一个记录商品A一周销售数据的列表:
sales_data = [50, 30, 40, 45, 60, 70, 65]
只需调用 `pd.Series()` 函数并传入该列表:
s = pd.Series(sales_data)
print(s)
默认情况下,Series 的索引从 0 开始自动生成。也就是说,数据的每个值对应一个从 0 开始的编号,非常适合初学者快速上手。
第三部分:自定义索引 —— 提升数据可读性
有时候,为了让数据更易读,我们可以自定义索引。例如商店的某天销售了三种商品,我们希望用商品编号作为索引:
sales_data = [50, 35, 42]
product_ids = ['P001', 'P002', 'P003']
s = pd.Series(sales_data, index=product_ids)
print(s)
输出的 Series 就会以 `P001`、`P002`、`P003` 为索引,而不是默认的数字索引,这样在展示和分析数据时就更加直观。
第四部分:访问数据 —— 使用索引取值
创建好 Series 后,我们可以通过索引快速访问其中的元素:
print(s[0]) # 使用默认索引访问第一个值
print(s['P002']) # 使用指定索引访问第二个商品的值
这种方式不仅灵活,而且支持混用默认与自定义索引,让我们能够更方便地定位所需数据。
第五部分:使用字典创建 Series —— 数据绑定更直接
除了列表,我们还可以使用 Python 的字典来创建 Series 对象,字典的键会自动变成 Series 的索引,值则成为数据内容:
data = {'shirt': 100, 'pants': 80, 'shoes': 60}
s = pd.Series(data)
print(s)
Series 对象将显示如下:
shirt 100
pants 80
shoes 60
dtype: int64
更棒的是,如果只需要字典中的部分数据,只需指定需要的索引:
s = pd.Series(data, index=['shirt', 'pants'])
print(s)
这样就可以快速筛选目标数据,避免冗余。
总结:掌握 Series,让数据处理更高效
通过上述方法,我们可以灵活地创建和操作 Pandas 的 Series 对象,无论是使用列表还是字典,都能轻松完成数据初始化与访问。掌握这些基础,是你迈入数据分析世界的重要一步。