floyd求最小环

本文介绍了一种使用Floyd算法及其扩展版本来解决寻找加权无向图中路径最短且不含重复顶点的环的问题。通过巧妙地调整算法流程,确保找到的环满足题目要求,同时给出了详细的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题链接:https://vjudge.net/problem/14074


题意:给你一个n个点加权无向图,要你从里面找一个路径最短的环,每个点只能经过一次 ,如果存在这样的最短环则把路径给打印出来,如果有多个,打印一个出来即可。

解题思路:(借鉴的,我觉得说的很好理解。。。所以直接套用解释)

最小环的定义:经过一条简单路径(除起点每点只经过一次)回到起点成为环,并且环的总长度最小称为最小环。

开始直接用floyd求每个点的dist[X][X],发现输出的时候问题很大,本题是floyd的扩展板。

如果简单的floyd打印路径算法还不熟悉可以看看这个博客的解释,很详细。http://blog.sina.com.cn/s/blog_6fbae1120100xfdd.html(挺好懂的)

回到重点,如果用简单的floyd求最小环,你会发现在求最短路的过程中有很多点是重复经过的。现在的问题是怎么找没有重复经过同一个点的最小环,这个问题才是整个floyd扩展板的关键。

      举个例子,不重复经过同一个点的最小环可以这么表示:u-->(x1-->x2-->x3-->……-->xm)-->v-->k-->u (其中u和k,v和k是直接相连的,(x1-->x2-->x3-->……-->xm)指的是不经过k的点u到v的最短路径)。在u,v,k确定的情况下,要是总环最小,说明只需要(x1-->x2-->x3-->……-->xm)和最小,即让u到v的最短路径最小,这个最短路径可以用floyd三循环完成。只差一步,现在的问题是让(x1-->x2-->x3-->……-->xm)与k不重复。所以在这里我们对k做一个限制,即让k节点比u,v,x,都大,而u和k,k和v都是直接相连的,对k进行一次遍历(1->n),接着镶嵌两个for循环 i(1->k-1) j(i+1->k-1),这样就保证了u,v,(x1-->x2-->x3-->……-->xm)一定比k小了,当然也就不会重复经过k了。

    我们可以发现,Floyd和最后枚举u,v,k三个变量求最小环的过程都是u,v,k三个变量,所以我们可以将其合并。这样,我们在k变量变化的同时,也就是进行Floyd算法的同时,寻找最大点为k的最小环。


#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<math.h>
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
typedef long long  ll;
#define inf 10000000
#define  maxn  105
int d[maxn][maxn],dis[maxn][maxn];
int pre[maxn][maxn],path[maxn];
int n,m,maxs,cnt;
void floyd()
{
	maxs=inf;
	int i,j,k;
	for(k=1;k<=n;k++)
	{
		for(i=1;i<k;i++)
			for(j=i+1;j<k;j++)
			{
				int tmp=d[i][j]+dis[i][k]+dis[k][j];
				if(tmp<maxs)
				{
					maxs=tmp;
					int p=j;
					cnt=0;
					while(p!=i)
					{
						path[++cnt]=p;
						p=pre[i][p];
					}
					path[++cnt]=i;
					path[++cnt]=k;
				}
			}
		for(i=1;i<=n;i++)
			for(j=1;j<=n;j++)
				if(d[i][j]>d[i][k]+d[k][j])
				{
					d[i][j]=d[i][k]+d[k][j];
					pre[i][j]=pre[k][j];
				}
	}
}
int main(void)
{
	int i,j,x,y,z;
	while(scanf("%d",&n))
	{
		if(n<=0)
			break;
		scanf("%d",&m);
		for(i=1;i<=n;i++)
			for(j=1;j<=n;j++)
			{
				d[i][j]=d[j][i]=inf;
				dis[i][j]=dis[j][i]=inf;
				pre[i][j]=i;
			}
		for(i=1;i<=m;i++)
		{
			scanf("%d%d%d",&x,&y,&z);
			if(d[x][y]>z)
			{
				d[x][y]=d[y][x]=z;
				dis[x][y]=dis[y][x]=z;
			}
		}
		floyd();
		if(maxs==inf)
			printf("No solution.\n");
		else
		{
			printf("%d",path[1]);
			for(i=2;i<=cnt;i++)
				printf(" %d",path[i]);
			printf("\n");
		}
	}
	return 0;
}


 


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值