问题链接:https://vjudge.net/problem/14074
题意:给你一个n个点加权无向图,要你从里面找一个路径最短的环,每个点只能经过一次 ,如果存在这样的最短环则把路径给打印出来,如果有多个,打印一个出来即可。
解题思路:(借鉴的,我觉得说的很好理解。。。所以直接套用解释)
最小环的定义:经过一条简单路径(除起点每点只经过一次)回到起点成为环,并且环的总长度最小称为最小环。
开始直接用floyd求每个点的dist[X][X],发现输出的时候问题很大,本题是floyd的扩展板。
如果简单的floyd打印路径算法还不熟悉可以看看这个博客的解释,很详细。http://blog.sina.com.cn/s/blog_6fbae1120100xfdd.html(挺好懂的)
回到重点,如果用简单的floyd求最小环,你会发现在求最短路的过程中有很多点是重复经过的。现在的问题是怎么找没有重复经过同一个点的最小环,这个问题才是整个floyd扩展板的关键。
举个例子,不重复经过同一个点的最小环可以这么表示:u-->(x1-->x2-->x3-->……-->xm)-->v-->k-->u (其中u和k,v和k是直接相连的,(x1-->x2-->x3-->……-->xm)指的是不经过k的点u到v的最短路径)。在u,v,k确定的情况下,要是总环最小,说明只需要(x1-->x2-->x3-->……-->xm)和最小,即让u到v的最短路径最小,这个最短路径可以用floyd三循环完成。只差一步,现在的问题是让(x1-->x2-->x3-->……-->xm)与k不重复。所以在这里我们对k做一个限制,即让k节点比u,v,x,都大,而u和k,k和v都是直接相连的,对k进行一次遍历(1->n),接着镶嵌两个for循环 i(1->k-1) j(i+1->k-1),这样就保证了u,v,(x1-->x2-->x3-->……-->xm)一定比k小了,当然也就不会重复经过k了。
我们可以发现,Floyd和最后枚举u,v,k三个变量求最小环的过程都是u,v,k三个变量,所以我们可以将其合并。这样,我们在k变量变化的同时,也就是进行Floyd算法的同时,寻找最大点为k的最小环。
#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<math.h>
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 10000000
#define maxn 105
int d[maxn][maxn],dis[maxn][maxn];
int pre[maxn][maxn],path[maxn];
int n,m,maxs,cnt;
void floyd()
{
maxs=inf;
int i,j,k;
for(k=1;k<=n;k++)
{
for(i=1;i<k;i++)
for(j=i+1;j<k;j++)
{
int tmp=d[i][j]+dis[i][k]+dis[k][j];
if(tmp<maxs)
{
maxs=tmp;
int p=j;
cnt=0;
while(p!=i)
{
path[++cnt]=p;
p=pre[i][p];
}
path[++cnt]=i;
path[++cnt]=k;
}
}
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(d[i][j]>d[i][k]+d[k][j])
{
d[i][j]=d[i][k]+d[k][j];
pre[i][j]=pre[k][j];
}
}
}
int main(void)
{
int i,j,x,y,z;
while(scanf("%d",&n))
{
if(n<=0)
break;
scanf("%d",&m);
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
d[i][j]=d[j][i]=inf;
dis[i][j]=dis[j][i]=inf;
pre[i][j]=i;
}
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
if(d[x][y]>z)
{
d[x][y]=d[y][x]=z;
dis[x][y]=dis[y][x]=z;
}
}
floyd();
if(maxs==inf)
printf("No solution.\n");
else
{
printf("%d",path[1]);
for(i=2;i<=cnt;i++)
printf(" %d",path[i]);
printf("\n");
}
}
return 0;
}