制造业行业数据挖掘之供应链优化

一、案例背景

某电子设备制造企业生产多种电子产品,其供应链涵盖原材料采购、零部件生产、产品组装、成品仓储与配送等多个环节,涉及众多供应商、生产工厂、仓库和销售渠道。随着市场竞争加剧和客户需求多样化,企业面临着供应链成本上升、交付周期延长、库存积压与缺货并存等问题,严重影响了企业的市场竞争力和盈利能力。为解决这些问题,企业决定运用数据挖掘技术对供应链进行优化,提升整体运营效率和效益。

二、数据挖掘实施步骤

(一)数据收集

  1. 内部业务数据:从企业的企业资源规划(ERP)系统中提取过去三年的生产计划、物料清单(BOM)、库存记录、销售订单、生产工单、采购订单等数据,这些数据详细记录了产品的生产流程、原材料和零部件的使用情况、库存的动态变化以及产品的销售情况,为分析供应链各环节的运作提供了基础信息,数据量达到数百万条记录,覆盖了企业生产的各类电子产品及其对应的供应链活动。
  2. 物流运输数据:收集与物流合作伙伴的运输记录,包括货物的发货时间、到货时间、运输方式(如公路、铁路、航空、海运等)、运输路线、运输费用、货物重量和体积等信息,以及物流过程中的货物损坏率、延误率等关键指标数据,通过对这些数据的分析,可以评估物流运输环节的效率和成本,找出潜在的优化空间,共积累了数千条物流运输记录,涉及企业与各地供应商、仓库和客户之间的货物运输情况。
  3. 供应商数据:整理供应商的基本信息,如供应商名称、地址、联系方式、供应的原材料和零部件种类、供应价格、交货周期、质量合格率、供应商的生产能力和产能利用率等,以及与供应商的合作历史数据,包括采购金额、采购次数、合同履行情况等,这些数据有助于评估供应商的综合绩效,为供应商选择和管理提供依据,涵盖了数百家供应商的详细信息和多年的合作数据。
  4. 市场需求数据:通过市场调研机构获取电子产品市场的需求预测数据、行业销售趋势报告、竞争对手的市场份额和产品价格信息等外部数据,同时结合企业自身的销售数据分析不同地区、不同季节、不同产品型号的市场需求波动情况,包括销售量、销售额、市场增长率等指标,以便更好地根据市场需求调整供应链策略,满足客户需求并抢占市场先机,市场需求数据每月定期更新,确保其及时性和相关性,为供应链的需求预测和规划提供有力支持。

(二)数据清洗

  1. 缺失值处理:对于内部业务数据中部分生产工单的原材料使用量缺失的情况,根据 BOM 信息和产品的标准生产工艺进行推算填充;对于物流运输数据中少量货物的运输路线缺失,结合发货地、到货地以及以往的运输习惯进行合理推测;对于供应商数据中个别供应商的产能利用率缺失,参考同行业类似供应商的平均水平或根据该供应商的历史生产数据进行估算。对于一些无法准确补充的缺失值,如某些早期采购订单中供应商的联系方式缺失且无法追溯,对这些记录进行标记或排除,以保证数据的完整性和可用性,避
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数研妙手

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值