一、案例背景
某大型互联网金融公司,拥有海量用户数据,包括用户身份信息、资金交易记录、理财投资偏好等,业务涵盖线上借贷、基金销售、财富管理等多个领域。随着业务规模不断扩大,网络攻击风险日益增加,如黑客入侵、恶意软件感染、数据泄露等,严重威胁公司运营、用户资产安全及公司声誉。为强化网络安全防护,公司决定借助数据挖掘技术,提前预警潜在安全威胁,及时发现并应对安全漏洞。
二、数据挖掘实施步骤
- 数据收集
-
- 网络流量数据:从公司内部网络的各个关键节点采集流入和流出的流量信息,涵盖数据包的源 IP、目的 IP、端口号、协议类型、传输内容特征等,时间跨度为过去一年,用于监测异常流量模式,识别潜在入侵行为。
-
- 系统日志数据:收集服务器、应用程序、数据库等各类系统的运行日志,包含用户登录时间、操作记录、错误信息、系统资源使用情况等,这些日志反映系统日常运行状态,为故障排查与安全事件分析提供依据。
-
- 用户行为数据:记录用户在平台上的操作轨迹,如登录地点、浏览页面、交易时间与金额、投资决策过程等,通过分析用户行为模式变化,发现异常操作,防范内部人员违规操作或账户被盗用引发的安全问题。
-
- 外部威胁情报:订阅专业安全机构提供的全球网络威胁情报,包括已知恶意 IP 地址、恶意软件特征码、最新网络攻击手段等,及时了解外部安全态势,补充公司内部数据视角