FET

How FET got its Name

A voltage applied to the metallic plate modalated the conductance of the underlying semiconductor, which in turn modulated the carrent flowing between ohmic contacts A and B. This phenomenon, where the conductivity of a semiconductor is modulated by an electric field applied normal to the surface of the semiconductor, has been named the field effect.

JFET (Junction FET)


Suppose we connect S to ground, reverse bias at S is V G V_G VG.

I-V Characteristics

  1. V G V_G VG = 0. When VD is small, ID is small. Linear I-V. No change in depletion width across channel.

  2. V G V_G VG increases. Channel pinches-off.


Questions

  1. Should/Should not I D I_D ID = 0 beyond pinch-off?
    No. Carriers can also pass depletion region, but see a much higher resisitance.
  2. Why does V D V_D VD > V D S a t V_D^{Sat} VDSat have no effect on ID?
    Increasing V D V_D VD will also increase the length of pinched-off region. These two effects cancel out.

Pinch-off voltage

V p V_p Vp = Reverse bias between n-channel and p + p^+ p+ gate at the drain end ( x = 0 ) (x=0) (x=0).
h ( x ) h(x) h(x) = Channel half-width at any x x x
a a a = half width of channel
Assumptions:

  1. Channel with at x = 0 x=0 x=0 decreases uniformly as the reverse bias increases to pinch-off.
  2. V b i V_{bi} Vbi neglected.
  3. p + − n p^+-n p+n gate junction.

V p = q a 2 N D 2 ε V_p=\frac{qa^2N_D}{2\varepsilon} Vp=2εqa2ND
a a a: half thickness

Channel Current

L L L: length
Z Z Z: depth
2 a 2a 2a: thickness

I D = G o V P [ V D V P + 2 3 ( − V G V P ) 3 / 2 − 2 3 ( V D − V G V P ) 3 / 2 ] I_D=G_oV_P\left[\frac{V_D}{V_P} + \frac23\left(-\frac{V_G}{V_P}\right)^{3/2} - \frac23\left(\frac{V_D-V_G}{V_P}\right)^{3/2}\right] ID=GoVP[VPVD+32(VPVG)3/232(VPVDVG)3/2]
G o = 2 a Z ρ L G_o=\frac{2aZ}{\rho L} Go=ρL2aZ
I D ( s a t ) = G o V P [ V D V P + 2 3 ( − V G V P ) 3 / 2 − 2 3 ] I_D(sat)=G_oV_P\left[\frac{V_D}{V_P} + \frac23\left(-\frac{V_G}{V_P}\right)^{3/2} - \frac23\right] ID(sat)=GoVP[VPVD+32(VPVG)3/232]

Gain (Transconductance)

g m ( s a t ) = ∂ I D ( s a t ) ∂ V G = G o [ 1 − ( − V G V P ) 1 / 2 ] g_m(sat)=\frac{\partial I_D(sat)}{\partial V_G}=G_o\left[1-\left(-\frac{V_G}{V_P}\right)^{1/2}\right] gm(sat)=VGID(sat)=Go[1(VPVG)1/2]

MESFET (Metal Semiconductor FET)

Metal-Semiconductor (MS) Contact

Energy Band Diagram of Metal and Semiconductor
  • Φ M \Phi_M ΦM: Metal Work Function (the one in photoelectric effect)
  • Φ S \Phi_S ΦS: Semiconductor Work Function
  • χ \chi χ: Electron Affinity. χ = ( E 0 − E C ) ∣ s u r f a c e \chi=(E_0-E_C)|_{surface} χ=(E0EC)surface

Φ S = χ + ( E c − E F ) F B \Phi_S=\chi+(E_c-E_F)_{FB} ΦS=χ+(EcEF)FB

  • ( E c − E F ) F B (E_c-E_F)_{FB} (EcEF)FB: Energy difference between E c E_c Ec and E F E_F EF at flat band (i.e.) zero bias condition.

Φ B = Φ M − χ \Phi_B=\Phi_M-\chi ΦB=ΦMχ

  • Φ B \Phi_B ΦB: surface potential-energy barrier encountered by electrons with E = E F E=E_F E=EF in the metal.

Schottky Diode

  • Φ M > Φ S \Phi_M>\Phi_S ΦM>ΦS: Applying V A > 0 V_A>0 VA>0 lowers E F M E_{FM} EFM below E F S E_{FS} EFS, reduces the barrier seen by electrons in the semiconductor.

  • Φ M < Φ S \Phi_M<\Phi_S ΦM<ΦS: Non-rectifying, Ohmic.

Heavily Doped (Degenerately Doped) Semiconductor


When the barrier is thin enough, the carriers can tunnel through.
Upper: forward bias. Below: rev bias
Additional component of current

Schottky Diode Calculations

  • Built-in Voltage

V b i = 1 q [ Φ B − ( E c − E F ) F B ] V_{bi}=\frac1q\left[\Phi_B-(E_c-E_F)_{FB}\right] Vbi=q1[ΦB(EcEF)FB]

  • ρ \rho ρ
    • Metal: delta function (charge only on surface)
    • Semiconductor: ρ = q N D \rho=qN_D ρ=qND
  • E E E:

E ( x ) = − q N D ε S i ( W − x ) … 0 ≤ x ≤ W E(x)=-\frac{qN_D}{\varepsilon_{Si}}(W-x)\ldots 0\le x\le W E(x)=εSiqND(Wx)0xW

  • V V V:

V ( x ) = − q N D 2 ε S i ( W − x ) 2 … 0 ≤ x ≤ W V(x)=-\frac{qN_D}{2\varepsilon_{Si}}(W-x)^2\ldots 0\le x \le W V(x)=2εSiqND(Wx)20xW

  • Depletion Width

W = 2 ε S i q N D ( V b i − V A ) W=\sqrt{\frac{2\varepsilon_{Si}}{qN_D}(V_{bi}-V_A)} W=qND2εSi(VbiVA)

  • Φ ( x ) \Phi(x) Φ(x)

Φ ( x ) = q N D x 2 2 ϵ S \Phi(x)=\frac{qN_Dx^2}{2\epsilon_S} Φ(x)=2ϵSqNDx2

  • Current Density

J = J S ( e q V a / k T − 1 ) J=J_S(e^{qV_a/kT}-1) J=JS(eqVa/kT1)
J S = A ∗ T 2 exp ⁡ ( − q Φ B k T ) J_S=A^*T^2\exp\left(-\frac{q\Phi_B}{kT}\right) JS=AT2exp(kTqΦB)
A ∗ A^* A is the Effective Richardson Constant

MOSFET (Metal-Oxide FET)

Composition

  • MOS Capacitor
  • Two pn juncitons

Terminal Naming

  • Carriers enter the structure through Source (S)
  • Leave through the Drain (D)
  • Subject to the control of the Gate (G)

Functionality (NMOS)

  • When V G ≤ V T V_G\le V_T VGVT, i.e. V G V_G VG is in accumulation or depletion biased, the gated region contains mostly holes and few electrons, an open circuit is formed.
  • When V G > V T V_G>V_T VG>VT, i.e. V G V_G VG is inversion biased, an inversion layer (channel) containing mobile electrons is formed.
  • As V D V_D VD increases, the channel finally pinches-off, the current saturates.

MOSFET Pinches-off

Channel Length Modulation of Short-Channel Device

MOS Energy Band Diagram

Band Diagram for NMOS
  • Accumulation ( V G < 0 V_G<0 VG<0) holes accumulate on the semiconductor side of the gate
  • Depletion ( 0 < V G < V T 0<V_G<V_T 0<VG<VT) holes repelled away, leaving Ionized acceptors atoms
  • Inversion ( V G > V T V_G>V_T VG>VT) electron density increase
    • Initially, n < n i n<n_i n<ni.
    • n = n i n=n_i n=ni when E i = E F E_i=E_F Ei=EF
  • When V G = V T V_G=V_T VG=VT, n = N A n=N_A n=NA, the semiconductor seems no longer to be depleted. Instead, it now behave similar to n-type. The channel has formed.

MOS Calculations

Φ S \Phi_S ΦS: Surface Potential

Φ S = 1 q [ E i ( b u l k ) − E i ( s u r f a c e ) ] \Phi_S=\frac1q[E_i(bulk)-E_i(surface)] ΦS=q1[Ei(bulk)Ei(surface)]

Φ F \Phi_F ΦF

Φ F = 1 q [ E i ( b u l k ) − E F ] \Phi_F=\frac1q[E_i(bulk)-E_F] ΦF=q1[Ei(bulk)EF]
In p-type, N A ≫ N D N_A\gg N_D NAND, p b u l k = n i exp ⁡ ( [ E i ( b u l k ) − E F ] / k T ) = N A p_{bulk}=n_i\exp([E_i(bulk)-E_F]/kT)= N_A pbulk=niexp([Ei(bulk)EF]/kT)=NA
Φ F = k T q ln ⁡ ( N A n i ) \Phi_F=\frac{kT}{q}\ln\left(\frac{N_A}{n_i}\right) ΦF=qkTln(niNA)
In n-type, N D ≫ N A N_D\gg N_A NDNA, n b u l k = n i exp ⁡ ( [ E F − E i ( b u l k ) ] ) = N D n_{bulk}=n_i\exp([E_F-E_i(bulk)])=N_D nbulk=niexp([EFEi(bulk)])=ND
Φ F = − k T q ln ⁡ ( N D n i ) \Phi_F=-\frac{kT}{q}\ln\left(\frac{N_D}{n_i}\right) ΦF=qkTln(niND)
When V G = V T V_G=V_T VG=VT,
Φ S = 2 Φ F \Phi_S=2\Phi_F ΦS=2ΦF

Depletion Width W W W

Valid before strong inversion:

W = 2 ε S i q N A Φ S W=\sqrt{\frac{2\varepsilon_{Si}}{qN_A}\Phi_S} W=qNA2εSiΦS
At strong inversion:

W m = 2 ϵ k T q 2 N A ln ⁡ ( N A n i ) W_m=2\sqrt{\frac{\epsilon kT}{q^2N_A}\ln\left(\frac{N_A}{n_i}\right)} Wm=2q2NAϵkTln(niNA)
When V G = V T V_G=V_T VG=VT, Φ S = 2 Φ F \Phi_S=2\Phi_F ΦS=2ΦF, the depletion width
W T = 4 ε S i q N A Φ F W_T=\sqrt{\frac{4\varepsilon_{Si}}{qN_A}\Phi_F} WT=qNA4εSiΦF

Threshold Voltage V T V_T VT

For N(-channel)MOS (P-bulk)

V T = 2 Φ F + ϵ O X I D E x O ϵ S i 4 q N A ϵ S i Φ F V_T=2\Phi_F+\frac{\epsilon_{OXIDE}x_O}{\epsilon_{Si}}\sqrt{\frac{4qN_A}{\epsilon_{Si}}\Phi_F} VT=2ΦF+ϵSiϵOXIDExOϵSi4qNAΦF
For PMOS (N-bulk)
V T = 2 Φ F − ϵ O X I D E x O ϵ S i 4 q N D ϵ S i ( − Φ F ) V_T=2\Phi_F-\frac{\epsilon_{OXIDE}x_O}{\epsilon_{Si}}\sqrt{\frac{4qN_D}{\epsilon_{Si}}(-\Phi_F)} VT=2ΦFϵSiϵOXIDExOϵSi4qND(ΦF)
x O x_O xO is the thickness of the OXIDE

Cap-Voltage Characteristics

PMOS (n-bulk)

NMOS (p-bulk) a: Low Freq, b&c: Hi Freq

Supplement

JFET pinch-off


Widening everywhere as V S D V_{SD} VSD grows

Why doesn’t current goto 0

If current is 0, the pinch-off will disappear. To maintain pinch-off, a non-zero current must be present.

How does current flow after pinch-off

Gradual Channel Approx

Formula for depetion layer width remainis same at every point and edge of depletion layer is not a multi-valued function at any point

JFET Transconductance

g m = ∂ I D ( s a t ) ∂ V G g_m=\frac{\partial I_D(sat)}{\partial V_G} gm=VGID(sat)
Proportional to V G \sqrt{V_G} VG
e at every point and edge of depletion layer is not a multi-valued function at any point

JFET Transconductance

g m = ∂ I D ( s a t ) ∂ V G g_m=\frac{\partial I_D(sat)}{\partial V_G} gm=VGID(sat)
Proportional to V G \sqrt{V_G} VG

FET(Field Effect Transistor,场效应晶体管)是一种电压控制型半导体器件,其工作原理基于电场对导电沟道的调控[^1]。与双极型晶体管(BJT)不同,FET通过栅极施加的电压来控制源极和漏极之间的电流,而不是依赖于基极电流。这种特性使得FET具有高输入阻抗的优点,通常可以达到 $10^{15} \Omega$ 级别[^3]。 ### FET的基本结构 FET主要由三个电极组成:栅极(Gate)、源极(Source)和漏极(Drain)。其中,栅极用于施加控制电压,源极和漏极之间形成导电沟道。根据导电类型的不同,FET可分为N沟道和P沟道两种形式。 ### FET的工作原理 FET的工作原理可以通过金属-氧化物半导体场效应晶体管(MOSFET)来说明。在MOSFET中,栅极与沟道之间有一层二氧化硅绝缘层,当栅极电压超过阈值电压 $U_{gs(th)}$ 时,会在沟道中形成导电路径,从而允许电流从源极流向漏极。对于常见的增强型MOSFET,其阈值电压通常为4.5V或2V[^2]。 ### FET的应用 FET因其高输入阻抗、低功耗和易于集成等优点,在电子电路中有着广泛的应用: - **放大器**:由于FET的高输入阻抗特性,它常用于信号放大电路中。 - **开关电路**:FET可以在饱和区和截止区之间快速切换,因此非常适合用作电子开关。 - **模拟电路**:在需要精确控制电流的场合,如电源管理电路中,FET也得到了广泛应用。 - **数字电路**:在CMOS技术中,FET被用来构建逻辑门电路,实现高性能的数字系统。 ### 示例代码:FET在电路仿真中的应用 以下是一个使用Python进行简单FET电路仿真的示例代码: ```python import numpy as np import matplotlib.pyplot as plt # 定义FET的参数 threshold_voltage = 4.5 # 阈值电压 Ugs(th) transconductance = 0.5 # 跨导 gm # 定义输入电压范围 voltage_range = np.linspace(0, 10, 400) # 计算输出电流 def calculate_drain_current(vgs): if vgs < threshold_voltage: return 0 else: return transconductance * (vgs - threshold_voltage)**2 drain_current = [calculate_drain_current(v) for v in voltage_range] # 绘制V-I曲线 plt.plot(voltage_range, drain_current) plt.xlabel('Gate-Source Voltage (V)') plt.ylabel('Drain Current (A)') plt.title('FET V-I Characteristic Curve') plt.grid(True) plt.show() ``` 这段代码展示了如何计算并绘制FET的V-I特性曲线。通过调整输入电压 $V_{GS}$,可以观察到输出电流的变化情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值