不相邻子序列最大和

本文介绍了一个经典算法问题——寻找数组中最大和的非邻接子序列,并提供了一个高效的解决方案。通过动态规划思想,文章中的代码示例展示了如何在O(n)的时间复杂度内解决问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

maximum sum non adjacent elements


  • 问题描述:
    给定一个数组,找出一个子序列,使得该子序列元素都不相邻,且和最大。
    如:[4,1,1,4,2,1]的最大值为9。

代码:

#include <stdio.h>
#include <vector>

using namespace std;

int MSNAE(vector<int>& nums) {

    int len = nums.size();
    if (len==0) {
        return 0;
    }

    int incl = nums[0];      //incl表示当可以包含nums[i]时,前i个元素所能达到的最大值;初始化为第一个元素
    int excl = 0;            //excl表示不包含第nums[i]时,前i个元素所能达到的最大值;初始化为0;
    for (int i=1; i<len; i++) {
        int temp = incl;
        incl = max(excl+nums[i], incl); //更新incl;1.不包含前一个元素,包括本元素(excl+nums[i]);2. 不包括本元素(incl)的较大值
        excl = temp;      //excl跟新为可能包括前一个元素的值(一定不包括i所指元素)
    }

    return incl;
}

int main(int argc, const char * argv[]) {

    vector<int> test = {4,1,1,4,2,1};
    int ans = MSNAE(test);
    printf("%d\n", ans);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值