问题描述:
设A 和B 是2 个字符串。要用最少的字符操作将字符串A 转换为字符串B。
这里所说的字符操作包括
(1)删除一个字符;
(2)插入一个字符;
(3)将一个字符改为另一个字符。
将字符串A变换为字符串B 所用的最少字符操作次数也称为字符串A到B 的编辑距离,记为 d(A,B)。
试设计一个有效算法,对任给的2 个字符串A和B,计算出它们的编辑距离d(A,B)。
思路:
使用动态规划算法
开一个二维数组d[i][j]来记录a0-ai与b0-bj之间的编辑距离,要递推时,需要考虑对其中一个字符串的删除操作、插入操作和替换操作分别花费的开销,从中找出一个最小的开销即为所求。
具体算法:
首先给定第一行和第一列,然后,每个值d[i,j]这样计算:d[i][j] = min(d[i-1][j]+1,d[i][j-1]+1,d[i-1][j-1]+(s1[i] == s2[j]?0:1));
最后一行,最后一列的那个值就是最小编辑距离
图解:
例如要找出字符串“abcdefg”与“aabcg”之间的最小编辑距离。下图给出二维数组d[i][j]的变化情况。
代码:
#include<stdio.h>