【模电笔记】—— 直流稳压电源——稳压电路

Tips:本章节笔记建议读者综合学习,内容较多,可谓是模电相当重要的部分,因此部分知识点没有做到详细解释。


1.稳压电路的性能指标

(同上节直流稳压电源的主要技术指标【模电笔记】—— 直流稳压电源——整流、滤波电路-CSDN博客

2.稳压管稳压电路

(1)特点

       简单易行,稳压性能好。适用于输出电压固定、负载电流变化较小的场合。

(2)结构特性

       稳压二极管(稳压管)由硅材料制作的面接触型二极管。管子杂质浓度高,空气电荷区电荷密度大,易形成强电场。稳压二极管工作在反向击穿区 (反向电流变化很大,而电压却基本保持不变),它就是利用PN结反向击穿特性实现稳压的。

(3)稳压二极管主要参数

  ①稳定电压 :稳压管的击穿电压。

  ②稳定电流 :使稳压管正常工作的电流,

  ③额定功耗

  ④动态内阻 ,其值越小,稳压性能越好。

(4)工作原理

       稳压二极管在电路中必须反向连接,如下图中稳压二极管反接并与负载电阻 并联,目的就是保证输出电压稳定。电路中还串联一个限流电阻R,它的作用是保证稳压二极管工作在反向击穿区(使工作电流满足 )。

不变,电网电压波动。 ,因反向击穿特性曲线很陡,所以 很多,使 ;而 ,故 基本保持不变。

(若 ,则 基本不变。利用R 上的电压变化补偿的波动

不变,负载 变化。 ,因反向击穿特性曲线很陡,所以 很多,使 ;而 ,因 ,导致 ,故 基本保持不变。

(若 ,则 基本不变,因而 基本不变。利用 的变化补偿的变化


3.串联型直流稳压电路

       该电路以稳压管稳压电路为基础,利用三极管的电流放大作用增大负载电流。引入深度电压负反馈稳定输出电压,通过改变参数等使输出电压可调,应用场合更广泛。

(1)电路组成

       如上图所示,由整流滤波电路的输出电压作为稳压电路的输人电压 ,电路由采样电阻 ,比较运放电路A,基准电压( 两段)和调整管T四个部分组成。由于调整管T串联接在输人电压和负载电阻 之间,所以称为串联型稳压电路。

(2)工作原理

       输人电压 或负载电流 导致输出电压 时,采样电阻组成的反馈网络对 进行采样,使反馈电压

       基准电压 不变, 分别接在运放电路的两个输人端,差模输人电压( ,比较运放电路A的输出电压也减小,送到调整管T的基极,即

       由此推出 ,使,最终结果是维持基本不变。上述稳压过程可简述为上图第一行。

(3)输出电压及其调节范围

(4) 调整管T

       它是稳压电路的核心元件之一,其功耗较大,常选用大功率放大管。实际选用调整管时,应留有一定的余量给电路加入其他保护措施,如限流、过压、过热等保护。


4.集成稳压电路(简单介绍)

       集成稳压电路按外引线端子多少和使用情况大致可分为三端固定式、 三端可调式、 多端可调式及单片开关式几种。

        三端固定式集成稳压电路只有输入、 输出和公共 3 个端子,由于使用起来非常方便, 因此被广泛应用,它的缺点是输出电压固定,在制造时需要生产各种输出电压和电流规格的系列产品。 常用的如: 7800系列是固定正输出电压的集成稳压器,7900系列是固定负输出电压的集成稳压器。

        三端可调式集成稳压器只需外接两个电阻就可获得各种输出电压。常用的如: W117为三端可调正输出集成稳压器,W137为三端可调负输出集成稳压器。

W7800三段集成稳压器

(1)简介:

       输出电压由具体型号中的后面两个数字代表,有5V、6V、9V、12V、15V、18V、24V等档次。输出电流以78后面的字母来区分,L:0.1A ;AM:0.5A;无字母:1.5A。

例如:W78L05表示输出5V、0.1A的电压、电流;W7915表示输出-15V、1.5A的电压、电流。

(2)基本应用

内容概要:本文针对火厂参与直购交易挤占风上网空间的问题,提出了一种风火打捆参与大用户直购交易的新式。通过分析可再生能源配额机制下的双边博弈关系,建立了基于动态非合作博弈理论的博弈型,以直购价和直购量为决策变量,实现双方收益均衡最大化。论文论证了纳什均衡的存在性,并提出了基于纳什谈判法的风-火利益分配方法。算例结果表明,该式能够增加各方收益、促进风消纳并提高网灵活性。文中详细介绍了型构建、成本计算和博弈均衡的实现过程,并通过Python代码复现了型,包括参数定义、收益函数、纳什均衡求解、利益分配及可视化分析等功能。 适合人群:力系统研究人员、能源政策制定者、从事力市场交易的工程师和分析师。 使用场景及目标:①帮助理解风火打捆参与大用户直购交易的博弈机制;②为力市场设计提供理论依据和技术支持;③评估不同政策(如可再生能源配额)对力市场的影响;④通过代码实现和可视化工具辅助教学和研究。 其他说明:该研究不仅提供了理论分析,还通过详细的代码实现和算例验证了型的有效性,为实际应用提供了参考。此外,论文还探讨了不同场景下的敏感性分析,如证书价格、风比例等对市场结果的影响,进一步丰富了研究内容。
资源下载链接为: https://pan.quark.cn/s/d37d4dbee12c A:计算机视觉,作为人工智能领域的关键分支,致力于赋予计算机系统 “看懂” 世界的能力,从图像、视频等视觉数据中提取有用信息并据此决策。 其发展历程颇为漫长。早期图像处理技术为其奠基,后续逐步探索三维信息提取,与人工智能结合,又经历数学理论深化、机器学习兴起,直至当下深度学习引领浪潮。如今,图像生成和合成技术不断发展,让计算机视觉更深入人们的日常生活。 计算机视觉综合了图像处理、机器学习、式识别和深度学习等技术。深度学习兴起后,卷积神经网络成为核心工具,能自动提炼复杂图像特征。它的工作流程,首先是图像获取,用相机等设备捕获视觉信息并数字化;接着进行预处理,通过滤波、去噪等操作提升图像质量;然后进入关键的特征提取和描述环节,提炼图像关键信息;之后利用这些信息训练型,学习视觉式和规律;最终用于式识别、分类、对象检测等实际应用。 在实际应用中,计算机视觉用途极为广泛。在安防领域,能进行人脸识别、目标跟踪,保障公共安全;在自动驾驶领域,帮助车辆识别道路、行人、交通标志,实现安全行驶;在医疗领域,辅助医生分析医学影像,进行疾病诊断;在工业领域,用于产品质量检测、机器人操作引导等。 不过,计算机视觉发展也面临挑战。比如图像生成技术带来深度伪造风险,虚假图像和视频可能误导大众、扰乱秩序。为此,各界积极研究检测技术,以应对这一问题。随着技术持续进步,计算机视觉有望在更多领域发挥更大作用,进一步改变人们的生活和工作方式 。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

忆和熙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值