如何安装安装 CUDA 和 cuDNN
安装 CUDA 和 cuDNN 的详细步骤,支持在 Windows 和 Linux 系统中为 TensorFlow/PyTorch 启用 GPU 加速:
安装前准备
确认显卡支持
仅限 NVIDIA 显卡(如 RTX 3090、A100 等),且支持 CUDA 计算能力≥3.5。
查看显卡算力: NVIDIA CUDA GPU 列表
安装 NVIDIA 驱动
Windows:通过 GeForce Experience 或NVIDIA 驱动下载页安装最新驱动。
Linux(Ubuntu 为例):
bash
Copy
sudo apt install nvidia-driver-535 # 驱动版本需匹配CUDA版本
sudo reboot
验证驱动安装
bash
Copy
nvidia-smi # 输出应显示GPU型号和驱动版本
二、 安装 CUDA Toolkit
- 选择 CUDA 版本
TensorFlow 版本对照表:
TensorFlow 版本 CUDA 版本 cuDNN 版本
2.15.x 11.8 8.6
2.12.x 11.8 8.6
推荐安装 CUDA 11.8(兼容性最佳)。 - 下载 CUDA
官网下载地址: CUDA Toolkit Archive
选择对应系统的 CUDA 11.8.0 版本(如Linux x86_64或Windows 10)。 - 安装 CUDA
Windows:
运行下载的.exe文件,选择 “自定义安装”。
取消勾选 “NVIDIA GeForce Experience”(可选)。
完成安装后,添加环境变量:
bash
Copy
系统变量中添加
CUDA_PATH = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
PATH += %CUDA_PATH%\bin;%CUDA_PATH%\libnvvp
Linux(以 Ubuntu 20.04 为例):
bash
Copy
下载并安装CUDA
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run
安装选项:
- 取消安装驱动(已提前安装)
- 选择Install
添加环境变量
echo ‘export PATH=/usr/local/cuda-11.8/bin:PATH′>> /.bashrcecho′exportLDLIBRARYPATH=/usr/local/cuda