配置环境
环境为YOLOv8.1.45 Python-3.10.12 torch-2.2.0 CUDA:0 (NVIDIA GeForce GTX 1650, 4096MiB)。
问题描述
本次模拟训练使用KITTI的公开数据集,选取了128张图片与标签作为训练集,32张图片与标签作为验证集。
训练集图片与标签如图所示:
标签符合yolo的格式
训练代码为
import ultralytics
from ultralytics import YOLO
def train_yolov8_on_kitti():
# 加载 YOLOv8 模型(你可以选择不同的模型,如 yolov8n、yolov8s、yolov8m 等)
model = YOLO('yolov8s.pt') # 使用预训练权重初始化
# 数据配置文件的路径(请确保 kitti.yaml 文件已经被正确设置)
data_yaml = 'kitti.yaml' # 替换为你自己的数据配置文件路径
# 训练超参数
epochs = 15 # 设置训练的轮数
batch_size = 8 # 批大小,根据你的显存大小进行调整
img_size = 640 # 输入图像尺寸
learning_rate = 0.001 # 初始学习率
try:
# 开始训练
model.train(