训练yolov8模型时,box_loss、cls_loss、dfl_loss为nan解决方法

配置环境

环境为YOLOv8.1.45  Python-3.10.12 torch-2.2.0 CUDA:0 (NVIDIA GeForce GTX 1650, 4096MiB)。

问题描述

本次模拟训练使用KITTI的公开数据集,选取了128张图片与标签作为训练集,32张图片与标签作为验证集。

训练集图片与标签如图所示:

 标签符合yolo的格式

训练代码为

import ultralytics
from ultralytics import YOLO

def train_yolov8_on_kitti():
    # 加载 YOLOv8 模型(你可以选择不同的模型,如 yolov8n、yolov8s、yolov8m 等)
    model = YOLO('yolov8s.pt')  # 使用预训练权重初始化

    # 数据配置文件的路径(请确保 kitti.yaml 文件已经被正确设置)
    data_yaml = 'kitti.yaml'  # 替换为你自己的数据配置文件路径

    # 训练超参数
    epochs = 15  # 设置训练的轮数
    batch_size = 8  # 批大小,根据你的显存大小进行调整
    img_size = 640  # 输入图像尺寸
    learning_rate = 0.001  # 初始学习率

    try:
        # 开始训练
        model.train(
     
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值