逻辑回归
算法
Logistic Regression(逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性。
二分类问题
二分类问题是指预测的 yyy值只有两个取值(0 或 1),二分类问题可以扩展到多分类问题。
Logistic 函数
LR分类器(Logistic Regression Classifier),在分类情形下,经过学习之后的LR分类器其实就是一组权值w0, w1, w2, ..., wmw_0, \ w_1,\ w_2,\ ...,\ w_mw0, w1, w2, ..., wm。当测试样本集中的测试数据来到时,这一组权值按照与测试数据线性加和的方式,求出一个z\boldsymbol zz值。
z=w0+w1x1+w2x2+...+wmxm\boldsymbol z = w_0 + w_1x_1 + w_2x_2 + ... + w_mx_mz=w0+w1x1+w2x2+...+wmxm。(其中 x1, x2, ..., xmx_1, \ x_2, \ ..., \ x_mx1, x2, ..., xm是样本数据的各个特征,维度为mmm),如果忽略二分类问题中的 yyy 的取值是一个离散的取值(0 或 1),继续使用线性回归来预测 yyy 的取值,这样会导致 yyy 的取值并不为 0 或 1。逻辑回归使用一个函数来归一化 yyy 值,使 yyy 的取值在区间(0, 1)内,这个函数称为 Logistic 函数 (Logistic Function),也称为 Sigmoid 函数 (Sigmoid Function)。
然后按照Sigmoid 函数的形式求出 g(z)\ g(z) g(z)。
g(z)=11+e−z g(z) = \frac1 {1+e^{-z}} g(z)=1+e−z1
由于Sigmoid 函数的定义域是 (-inf, inf),而值域为 (0, 1)。因此最基本的LR分类器适合对两类目标进行分类。
Logistic 函数当 zzz 趋近于无穷大时,g(z)g(z)g(z) 趋近于1;当 zzz 趋近于无穷小时,g(z)g(z)g(z) 趋近于0
代码实现
import torch as tr
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
input_size = 784
num_classes = 10
num_epochs = 10
batch_size = 50
learning_rate = 0.001
train_dataset = dsets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
train_loader = tr.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = tr.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=True)
class LogisticRegression(nn.Module):
def __init__(self, input_size, num_classes):
super(LogisticRegression, self).__init__()
self.linear = nn.Linear(input_size, num_classes)
def forward(self, x):
out = self.linear(x)
return out
net = LogisticRegression(5, 1)
print(net)
model = LogisticRegression(input_size, num_classes)
loss_fun = nn.CrossEntropyLoss()
optimizer = tr.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.view(-1, 28*28))
labels = Variable(labels)
optimizer.zero_grad()
outputs = model(images)
loss = loss_fun(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f' % (epoch+1, num_epochs, i+1,
len(train_dataset)//batch_size, loss.item()))
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, 28*28))
outputs = model(images)
_, predicted = tr.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Acdcuracy of the model on the 10000 test images: %d %%' %
(100 * correct / total))
tr.save(model.state_dict(), 'model.pkl')