pytorch入门(二)—— 逻辑回归算法

本文深入探讨了逻辑回归(Logistic Regression),一种广泛应用于机器学习的分类算法。重点介绍了其在解决二分类问题上的应用,通过Logistic函数将线性回归的连续输出转换为概率形式,适用于预测事件发生的可能性。同时,提供了基于PyTorch的MNIST数据集上实现逻辑回归的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逻辑回归

算法
Logistic Regression(逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性。

二分类问题
二分类问题是指预测的 yyy值只有两个取值(0 或 1),二分类问题可以扩展到多分类问题。

Logistic 函数
LR分类器(Logistic Regression Classifier),在分类情形下,经过学习之后的LR分类器其实就是一组权值w0, w1, w2, ..., wmw_0, \ w_1,\ w_2,\ ...,\ w_mw0, w1, w2, ..., wm。当测试样本集中的测试数据来到时,这一组权值按照与测试数据线性加和的方式,求出一个z\boldsymbol zz值。
z=w0+w1x1+w2x2+...+wmxm\boldsymbol z = w_0 + w_1x_1 + w_2x_2 + ... + w_mx_mz=w0+w1x1+w2x2+...+wmxm。(其中 x1, x2, ..., xmx_1, \ x_2, \ ..., \ x_mx1, x2, ..., xm是样本数据的各个特征,维度为mmm),如果忽略二分类问题中的 yyy 的取值是一个离散的取值(0 或 1),继续使用线性回归来预测 yyy 的取值,这样会导致 yyy 的取值并不为 0 或 1。逻辑回归使用一个函数来归一化 yyy 值,使 yyy 的取值在区间(0, 1)内,这个函数称为 Logistic 函数 (Logistic Function),也称为 Sigmoid 函数 (Sigmoid Function)。
然后按照Sigmoid 函数的形式求出 g(z)\ g(z) g(z)
g(z)=11+e−z g(z) = \frac1 {1+e^{-z}} g(z)=1+ez1
由于Sigmoid 函数的定义域是 (-inf, inf),而值域为 (0, 1)。因此最基本的LR分类器适合对两类目标进行分类。
Logistic 函数当 zzz 趋近于无穷大时,g(z)g(z)g(z) 趋近于1;当 zzz 趋近于无穷小时,g(z)g(z)g(z) 趋近于0

代码实现

import torch as tr
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable

input_size = 784
num_classes = 10
num_epochs = 10
batch_size = 50

learning_rate = 0.001

train_dataset = dsets.MNIST(root='./data',
        train=True,
        transform=transforms.ToTensor(),
        download=True)

test_dataset = dsets.MNIST(root='./data',
        train=False,
        transform=transforms.ToTensor())

train_loader = tr.utils.data.DataLoader(dataset=train_dataset,
        batch_size=batch_size,
        shuffle=True)

test_loader = tr.utils.data.DataLoader(dataset=test_dataset,
        batch_size=batch_size,
        shuffle=True)

class LogisticRegression(nn.Module):
    def __init__(self, input_size, num_classes):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_size, num_classes)

    def forward(self, x):
        out = self.linear(x)
        return out


net = LogisticRegression(5, 1)
print(net)

model = LogisticRegression(input_size, num_classes)

loss_fun = nn.CrossEntropyLoss()
optimizer = tr.optim.SGD(model.parameters(), lr=learning_rate)

for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = Variable(images.view(-1, 28*28))
        labels = Variable(labels)
        optimizer.zero_grad()
        outputs = model(images)
        loss = loss_fun(outputs, labels)
        loss.backward()
        optimizer.step()
        if (i+1) % 100 == 0:
            print('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f' % (epoch+1, num_epochs, i+1,
                len(train_dataset)//batch_size, loss.item()))


correct = 0
total = 0
for images, labels in test_loader:
    images = Variable(images.view(-1, 28*28))
    outputs = model(images)
    _, predicted = tr.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum()

print('Acdcuracy of the model on the 10000 test images: %d %%' %
        (100 * correct / total))

tr.save(model.state_dict(), 'model.pkl')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值