【Atcoder Dp C Vacation】

博客详细介绍了Atcoder上的一个DP问题C Vacation。题目要求在给定的n个x, y, z数组中,每天选择一个不连续的元素,讨论了如何利用动态规划dp[i][0-2]来表示第i天取x, y或z的状态,并给出了转移状态的代码实现,最终求解dp[n][0-2]的最大值。" 121365739,11002635,二维数组的鞍点寻找算法,"['算法', '动态规划', 'java']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Atc C
题意 给你n个 x y z 数组
让你每天取一个 规则是不能连着取
那么dp[i][0]代表第 i 天取 x
dp[i][1]代表第 i 天取 y
dp[i][2]代表第 i 天取 z
然后转移看代码
最后对dp[n][0-2]取个max

/*
    if you can't see the repay
    Why not just work step by step
    rubbish is relaxed
    to ljq
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#include <vector>
#include <stdlib.h>
#include <algorithm>
using namespace std;

#define dbg(x) cout<<#x<<" = "<< (x)<< endl
#define dbg2(x1,x2) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<endl
#define dbg3(x1,x2,x3) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<" "<<#x3<<" = "<<x3<<endl
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
#define lc (rt<<1)
#define rc (rt<<11)
#define mid ((l+r)>>1)

typedef pair<int,int> pll;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll _INF = 0xc0c0c0c0c0c0c0c0;
const ll mod =  (int)1e9+7;

ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll ksm(ll a,ll b,ll mod){int ans=1;while(b){if(b&1) ans=(ans*a)%mod;a=(a*a)%mod;b>>=1;}return ans;}
ll inv2(ll a,ll mod){return ksm(a,mod-2,mod);}
void exgcd(ll a,ll b,ll &x,ll &y,ll &d){if(!b) {d = a;x = 1;y=0;}else{exgcd(b,a%b,y,x,d);y-=x*(a/b);}}//printf("%lld*a + %lld*b = %lld\n", x, y, d);
const int MAX_N = 100025;
ll dp[MAX_N][3];
struct node
{
    ll x,y,z;
}arr[MAX_N];
int main()
{
    //ios::sync_with_stdio(false);
    //freopen("a.txt","r",stdin);
    //freopen("b.txt","w",stdout);
    int n;scanf("%d",&n);
    for(int i = 1;i<=n;++i) scanf("%lld%lld%lld",&arr[i].x,&arr[i].y,&arr[i].z);
    dp[1][0] = arr[1].x,dp[1][1] =arr[1].y,dp[1][2] = arr[1].z;
    for(int i = 2;i<=n;++i)
        dp[i][0] = max(dp[i-1][1],dp[i-1][2])+arr[i].x,dp[i][1] = max(dp[i-1][0],dp[i-1][2])+arr[i].y,dp[i][2] = max(dp[i-1][0],dp[i-1][1])+arr[i].z;
    printf("%lld\n",max(dp[n][0],max(dp[n][1],dp[n][2])));
    //fclose(stdin);
    //fclose(stdout);
    //cout << "time: " << (long long)clock() * 1000 / CLOCKS_PER_SEC << " ms" << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值