Qwen2技术报告解读

论文:https://arxiv.org/pdf/2407.10671

摘要

本报告介绍了最新的大型语言模型和多模态模型Qwen2系列。该系列包括参数范围从0.5亿到720亿的基础型和指令微调型语言模型,涵盖密集模型和混合专家模型。Qwen2在多个基准测试中表现优异,超越了之前的开源模型,并在语言理解、生成、多语言能力等方面展现出竞争力。旗舰模型Qwen2-72B在多项基准测试中得分领先,指令微调版本Qwen2-72B-Instruct在多语言翻译和实时代码基准测试中表现出色。Qwen2支持约30种语言,显示出强大的多语言能力。模型权重已在Hugging Face、ModelScope和GitHub上公开,提供量化、微调和部署资源,以促进社区创新和应用研究。

1 介绍

随着ChatGPT的兴起,全球对大型语言模型的关注度激增,Llama系列模型进一步推动了开源社区的热情。近期,Claude-3 Opus和GPT-4o在Chatbot Arena上表现出色,Llama-3被认为达到了GPT-4的水平。Qwen、Mistral、Gemma等模型以开源方式发布,追求类似OpenAI GPT系列的进步。Qwen系列近期推出了Qwen1.5、Qwen-VL和Qwen-Audio。新成员Qwen2是一系列基于Transformer架构的大型语言模型,包括基础模型和指令微调模型,参数范围从5亿到720亿不等,适用于不同规模的部署。所有模型在包含7万亿词元的高质量数据集上预训练,涵盖广泛领域和语言。Qwen2在多个基准测试中表现优异,指令微调版本Qwen2-72B-Instruct在MT-Bench、Arena-Hard和LiveCodeBench中得分领先,基础语言模型Qwen2-72B在MMLU、GPQA、HumanEval、GSM8K和BBH中表现出色。

  1. TOKENIZER与模型

2.1 TOKENIZER

Qwen2采用基于字节级字节对编码的tokenizer,具有高编码效率和多语言能力。所有模型使用包含151,643个常规词元和3个控制词元的通用词汇表,适用于分布式训练。

2.2 模型架构

Qwen2基于Transformer架构,包含密集模型和混合专家(MoE)模型。密集模型采用分组查询注意力(GQA)和双块注意力(DCA),优化KV缓存使用和长上下文性能。MoE模型通过细粒度专家和专家路由机制提高性能和适应性。

### Qwen2.5-VL模型的特点和用途解读 #### 特点 Qwen2.5-VL模型是一款专注于多模态任务的视觉理解模型,其设计目标在于提升对图像内容的理解能力,并能够将其与自然语言处理相结合[^2]。以下是该模型的主要特点: - **跨模态融合**:Qwen2.5-VL具备强大的跨模态学习能力,可以同时处理文本和图像数据,实现两者的深度融合。这种特性使得它能够在复杂的场景下提供更精准的结果。 - **高精度识别**:通过对大量标注数据的学习训练,此模型在物体检测、场景分类等多个计算机视觉领域达到了行业领先水平。 - **灵活的应用接口**:为了便于开发者快速上手使用,官方提供了详细的Cookbook文档指导,其中包括了具体案例分析以及API调用方式说明等内容。 #### 用途 基于上述提到的技术优势,Qwen2.5-VL广泛应用于以下几个方面: 1. **图文检索**: 用户可以通过上传图片或者输入关键词查询相关内容,系统会返回最匹配的一组结果. 2. **视觉问答(VQA)**: 当面对含有复杂信息量较高的照片时(比如图表),人们往往难以直接获取所需知识点;而借助于VQA技术则可以让机器自动解析这些难题并给出简洁明了的回答. 3. **图像描述生成**: 自动为给定的图片生产一段恰当的文字解释或故事叙述,这项功能特别适合用于辅助视障人士感知周围环境或是电商网站商品详情页自动生成文案等方面的工作当中去实践应用起来非常有价值意义非凡值得推广普及开来让更多人都能享受到科技进步带来的便利之处所在之地无处不在随时随地随心所欲尽情享受吧朋友们! ```python from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer import torch from PIL import Image model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") # 这里仅作为示例,请替换为实际可用的Qwen2.5-VL模型路径 feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def predict_step(image_paths): images = [] for image_path in image_paths: i_image = Image.open(image_path) if i_image.mode != "RGB": i_image = i_image.convert(mode="RGB") images.append(i_image) pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds # 调用predict_step函数传入图片文件名列表即可得到对应的文本描述结果 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值