这十套练习,教你如何使用Pandas做数据分析

本文提供了10个Pandas练习,涵盖数据加载、探索、过滤、排序、分组、合并、统计、可视化等多个方面,旨在帮助读者通过实际操作提升Python数据分析技能。练习涉及的数据集包括Chipotle快餐、2012欧洲杯、酒类消费、美国犯罪、虚拟姓名、风速、泰坦尼克、Pokemon、Apple股价和Iris纸鸢花等,覆盖了多元化的应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pandas是入门Python做数据分析所必须要掌握的一个库,本文精选了十套练习题,帮助读者上手Python代码,完成数据集探索。

本文内容由科赛网翻译整理自Github,建议读者完成科赛网 从零上手Python关键代码Pandas基础命令速查表 教程学习的之后,再对本教程代码进行调试学习。

【小提示:本文所使用的数据集下载地址:DATA | TRAIN 练习数据集

👇点击此处,不用配环境,就可以在线运行代码

这十套练习,教你如何使用Pandas做数据分析


其他x题系列:

目录

习题编号 内容 相应数据集
练习1 - 开始了解你的数据 探索Chipotle快餐数据 chipotle.tsv
练习2 - 数据过滤与排序 探索2012欧洲杯数据 Euro2012_stats.csv
练习3 - 数据分组 探索酒类消费数据 drinks.csv
练习4 -Apply函数 探索1960 - 2014 美国犯罪数据 US_Crime_Rates_1960_2014.csv
练习5 - 合并 探索虚拟姓名数据 练习中手动内置的数据
练习6 - 统计 探索风速数据 wind.data
练习7 - 可视化 探索泰坦尼克灾难数据 train.csv
练习8 - 创建数据框 探索Pokemon数据 练习中手动内置的数据
练习9 - 时间序列 探索Apple公司股价数据 Apple_stock.csv
练习10 - 删除数据 探索Iris纸鸢花数据 iris.csv

练习1-开始了解你的数据

探索Chipotle快餐数据

相应数据集:chipotle.tsv

步骤1 导入必要的库

# 运行以下代码
import pandas as pd

步骤2 从如下地址导入数据集

# 运行以下代码
path1 = "../input/pandas_exercise/exercise_data/chipotle.tsv"    # chipotle.tsv

步骤3 将数据集存入一个名为chipo的数据框内

# 运行以下代码
chipo = pd.read_csv(path1, sep = '\t')

步骤4 查看前10行内容

# 运行以下代码
chipo.head(10)

步骤6 数据集中有多少个列(columns)

# 运行以下代码
chipo.shape[1]

步骤7 打印出全部的列名称

# 运行以下代码
chipo.columns

步骤8 数据集的索引是怎样的

# 运行以下代码
chipo.index

步骤9 被下单数最多商品(item)是什么?

# 运行以下代码,做了修正
c = chipo[['item_name','quantity']].groupby(['item_name'],as_index=False).agg({
   
   'quantity':sum})
c.sort_values(['quantity'],ascending=False,inplace=True)
c.head()

步骤10 在item_name这一列中,一共有多少种商品被下单?

# 运行以下代码
chipo['item_name'].nunique()

步骤11 在choice_description中,下单次数最多的商品是什么?

# 运行以下代码,存在一些小问题
chipo['choice_description'].value_counts().head()

步骤12 一共有多少商品被下单?

# 运行以下代码
total_items_orders = chipo['quantity'].sum()
total_items_orders

步骤13 将item_price转换为浮点数

# 运行以下代码
dollarizer = lambda x: float(x[1:-1])
chipo['item_price'] = chipo['item_price'].apply(dollarizer)

步骤14 在该数据集对应的时期内,收入(revenue)是多少

# 运行以下代码,已经做更正
chipo['sub_total'] = round(chipo['item_price'] * chipo['quantity'],2)
chipo['sub_total'].sum()

步骤15 在该数据集对应的时期内,一共有多少订单?

# 运行以下代码
chipo['order_id'].nunique()

步骤16 每一单(order)对应的平均总价是多少?

# 运行以下代码,已经做过更正
chipo[['order_id','sub_total']].groupby(by=['order_id']).agg({
   
   'sub_total':'sum'})['sub_total'].mean()

步骤17 一共有多少种不同的商品被售出?

# 运行以下代码
chipo['item_name'].nunique()

练习2-数据过滤与排序

探索2012欧洲杯数据

相应数据集:Euro2012_stats.csv

步骤1 - 导入必要的库

# 运行以下代码
import pandas as pd

步骤2 - 从以下地址导入数据集

# 运行以下代码
path2 = "../input/pandas_exercise/exercise_data/Euro2012_stats.csv"      # Euro2012_stats.csv

步骤3 - 将数据集命名为euro12

# 运行以下代码
euro12 = pd.read_csv(path2)
euro12

步骤4 只选取 Goals 这一列

# 运行以下代码
euro12.Goals

步骤5 有多少球队参与了2012欧洲杯?

# 运行以下代码
euro12.shape[0]

步骤6 该数据集中一共有多少列(columns)?

# 运行以下代码
euro12.info()

步骤7 将数据集中的列Team, Yellow Cards和Red Cards单独存为一个名叫discipline的数据框

# 运行以下代码
discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']]
discipline

步骤8 对数据框discipline按照先Red Cards再Yellow Cards进行排序

# 运行以下代码
discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False)

步骤9 计算每个球队拿到的黄牌数的平均值


                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值