机器学习与深度学习技术综合解析
1. 机器学习基础概念
1.1 分类与回归
分类和回归是机器学习中的两大核心任务。分类任务旨在预测样本的类别标签,例如判断一封邮件是否为垃圾邮件;而回归任务则用于预测连续的数值结果,如预测房屋的价格。在分类算法的选择上,需要综合考虑数据的特点、模型的复杂度以及性能要求等因素。常见的分类算法包括逻辑回归、决策树、支持向量机等;回归算法则有线性回归、多项式回归、随机森林回归等。
1.2 数据预处理
数据预处理是机器学习流程中至关重要的一步,它直接影响到模型的性能和效果。数据预处理主要包括以下几个方面:
- 处理缺失值 :数据中可能存在缺失值,需要进行处理。常见的方法有删除含有缺失值的样本或特征、使用均值、中位数或众数进行填充等。
- 特征缩放 :不同特征的取值范围可能差异很大,这会影响模型的训练效果。特征缩放可以将特征的取值范围缩放到相同的区间,常见的方法有标准化和归一化。
- 编码分类数据 :对于分类数据,需要将其转换为数值形式,以便模型能够处理。常见的编码方法有独热编码和标签编码。
1.3 模型评估
模型评估是衡量模型性能的重要环节,通过评估指标可以了解模型的优劣。常见的评估指标包括准确率、召回率、F1 分数、均方误差等。在实际应用中,需要根据具体的任务和需求选择合适的评估指标。例如,在垃圾邮件分类任务中,更关注召回率,即尽可能地找出所有的垃圾邮件;而在房价预测任务中,均方误差则是一个常用的评估指标。