文章目录
本章需要掌握内容
- 理解线性方程组解的概念.
- 非齐次线性方程组
Ax = b
可能有解(唯一解或无穷多解),亦可能无解,要理解方程组有解的充要条件是秩r(A) = r(Ā). - n元齐次方程组Ax = 0 有非零解的判断方法是检查
r(A) < n
,或检查行列式 | A | = 0。
要理解基础解系这一概念,其实它就是解向量的极大线性无关组(一般都能化成单位矩阵?)
,要掌握基础解系的求法与证明. - 要熟悉线性方程组解的性质,掌握解的结构,熟练运用初等行变换求通解(特解、导出组基础解系)。
一. 基本内容与重要结论
1. 线性方程组的定义
1. 非齐次线性方程组、齐次线性方程组
2. 一组解与全部解
3. 方程组的增广矩阵与系数矩阵