超级计算机在引力系统与多孔介质研究中的应用
在科学研究的诸多领域,超级计算机正发挥着越来越重要的作用。本文将探讨超级计算机在引力系统的3D动力学研究以及半无限多孔介质中瞬态机械波传播研究中的应用。
引力系统3D动力学研究
在研究引力系统的3D动力学时,我们使用了基于粒子 - 单元法的并行数值代码。该并行实现对于网格节点数少于212 × 256 × 146且粒子数约为10⁸的模拟是有效的。若要使用更精细的网格,我们讨论了基于区域分解技术的可能策略。
平衡分布函数的研究
真实恒星系统的分布函数(DF)非常复杂,似乎只能通过数值模拟来恢复。借助并行代码,我们能够以最通用的方式对平衡DF进行数值研究,不受早期尝试中典型的分布函数形式的限制。我们提出了一种通过解决非稳态问题来研究不同类型平衡分布的方法,这需要观察引力系统在多次旋转过程中的演化。从给定的分布开始,粒子的轨道在演化过程中相互混合,从而使整个系统达到稳态,得到的函数被视为平衡函数。
中心体对薄盘垂直运动的影响
对于初始状态,我们使用了以下轴对称的面密度函数:
当 (z = 0) 时,
[
\sigma(r) =
\begin{cases}
\sigma_0 \left(1 - \left(\frac{r}{R_0}\right)^2\right), & r \leq R_0 \
0, & r > R_0
\end{cases}
]
当 (z \neq 0) 时,(f(t, r, u) = 0)。其中 (\sigma_0) 由圆盘总质量等于 (M_0)