图像增强序列——Adaptive Local Power-Law Transformation for Color Image Enhancement(自适应伽马变换)

本文介绍了Adaptive Local Power-Law Transformation,一种用于色彩图像增强的方法,通过自适应伽马校正提升图像视觉效果。内容包括参考文献、模型实现,特别是积分图的计算,并展示了模型应用后的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 参考文献

2. 模型实现

% 论文: Adaptive Local Power-Law Transformation for Color Image Enhancement
% 作者: Chun-Ming Tsai
%
% Author: HSW
% Date: 2018-04-27

clc;
close all;
clear;

img = imread('timg2.jpg');

figure(1);
imshow(img, []);
title('原图像');

if size(img, 3) == 3
    img_hsv = rgb2hsv(img);
    img_V = img_hsv(:, :, 3);
    img_V  = img_V .* 255;
    img_V_out = img_V;
    alpha = 2.2;
    [m, n] = size(img_V);
    hsize = 3;
    totalPixel = (2*hsize + 1) * (2*hsize + 1);
    method = 2; % = 1 表示普通的计算方法, = 2 表示利用积分图的计算方法
    
    if method == 1
        t0_1 = tic;
        for i = hsize + 1:m - hsize
            for j = hsize + 1:n - hsize
                mu = sum(sum(img_V(i + [-hsize:hsize], j + [-hsize:hsize]))) / totalPixel;
                gama = ( 1 / alpha)^((128 - mu) / 128.0);
                img_V_out(i, j) = uint8(255 * (img_V(i
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值