题目描述
给定一个 N×M 方格的迷宫,迷宫里有 T 处障碍,障碍处不可通过。
在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。
给定起点坐标和终点坐标,每个方格最多经过一次,问有多少种从起点坐标到终点坐标的方案。
输入格式
第一行为三个正整数 N,M,T,分别表示迷宫的长宽和障碍总数。
第二行为四个正整数 SX,SY,FX,FY,SX,SY 代表起点坐标,FX,FY 代表终点坐标。
接下来 T 行,每行两个正整数,表示障碍点的坐标。
输出格式
输出从起点坐标到终点坐标的方案总数。
输入输出样例
输入 #1复制
2 2 1 1 1 2 2 1 2
输出 #1复制
1
说明/提示
对于 100% 的数据,1≤N,M≤5,1≤T≤10,1≤SX,FX≤n,1≤SY,FY≤m。
代码:
#include <bits/stdc++.h>
#define MX 500
using namespace std;
int n,m,t;
int sx,sy,fx,fy;
int f[MX][MX] = {0};
int dx[4] = {0,0,1,-1},dy[4] = {1,-1,0,0};
bool visited[MX][MX];
int cnt = 0;
void dfs(int x,int y)
{
if(x == fx && y == fy){
cnt++;
return;
}
for(int i = 0;i < 4;i++)
{
int a = x + dx[i];
int b = y + dy[i];
if(a > 0 && a <= n && b > 0 && b <= m && !visited[a][b] && f[a][b] != -1)
{
visited[a][b] = 1;
dfs(a,b);
visited[a][b] = 0;//出错点,放在if语句里面
}
}
}
int main() {
cin>>n>>m>>t;
cin>>sx>>sy>>fx>>fy;
memset(visited,0,sizeof(visited));
for(int i = 1;i <= t;i++)
{
int x,y;
cin>>x>>y;
f[x][y] = -1;//障碍点
}
visited[sx][sy] = 1;
dfs(sx,sy);
cout<<cnt<<endl;
return 0;
}