
深度框架|Hugging Face
文章平均质量分 86
hjxu2016
好记性不如烂笔头|
独乐乐不如众乐乐|
你的纠错与关注就是对我最大的支持
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Transformers实战篇2】练习之命名实体识别
命名实体识别(Named Entity Recognition, 简称NER)是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等。通常包括两部分:① 实体边界识别 ② 确定实体类别(人名、地名、机构名或其他)例:“小明在北京上班”实体类别实体地点北京人物小明。原创 2024-09-27 16:10:53 · 1007 阅读 · 0 评论 -
【Transformers实战篇1】基于Transformers的NLP解决方案
本文为的视频学习笔记。原创 2024-09-25 16:46:58 · 1651 阅读 · 0 评论 -
【Transformers基础入门篇7】基础组件之Trainer
Trainer是库中提供的训练的函数,内部封装了完整的训练、评估逻辑,并集成了多种的后端,如等,搭配对训练过程中的各项参数进行配置,可以方便快捷地启动模型 单机/分布式训练使用Trainer进行模型训练对模型的输入输出是有限制的,要求模型返回元组或者的子类如果输入中提供了labels,模型要能返回loss结果,如果是元组,要求loss为元组中的第一个值。原创 2024-09-25 15:22:16 · 1566 阅读 · 0 评论 -
【Transformers基础入门篇6】基础组件之Evaluate
evaluate库是一个非常简单医用的机器学习模型评估函数库,只需要一行代码,便可以加载各种任务的评估函数。原创 2024-09-25 13:54:36 · 666 阅读 · 0 评论 -
【Transformers基础入门篇5】基础组件之Datasets
dataset库是一个非常简单易用的数据集加载库,可以方便快捷的从本地或者HuggingFace Hub加载数据集公开数据集地址:# filed 指限定某个字段的数据。原创 2024-09-24 15:54:41 · 2103 阅读 · 0 评论 -
【Transformers基础入门篇4】基础组件之Model
既然这个包的名字叫Transformers,那么大部分整个模型都是基于Transformer架构。原始的Tranformer为编码器(Encoder)、解码器(Decoder)模型Encoder部分接收输入并构建其完整的特征表示,Decoder部分使用Encoder的编码结果以及其他的输入生成目标序列无论是编码器还是解码器,均由多个TransformerBlock堆叠而成TransformerBloc由注意力机制(Attention)和FFN组成。原创 2024-09-23 17:30:07 · 1438 阅读 · 0 评论 -
【Transformers基础入门篇2】基础组件之Pipeline
将数据预处理、模型调用、结果后处理三部分组装成的流水线,如下流程图使我们能够直接输入文本便获得最终的答案,不需要我们关注细节fill:#333;color:#333;color:#333;fill:none;color:#333;color:#333;fill:none;我觉得不太行。原创 2024-09-23 14:09:31 · 2008 阅读 · 0 评论 -
【Transformers基础入门篇1】基础知识与环境安装
HuggingFace出品,最常使用的自然语言处理工具实现了大量基于Transformer架构的主流预训练模型,并且不局限于自然语言处理模型,还包括图像、音频以及多模态的模型提供了海量的预训练模型与数据集,同时支持用户自行上传、社区完善,文档全,上手简单Tranformers:核心库,包括了模型加载、模型训练、流水线(pipeline)等Tokenizer:分词器,对数据进行预处理,文本到token序列的相互转换Datasets:数据集库,提供了数据的加载、处理等方法。原创 2024-09-23 11:21:39 · 1170 阅读 · 0 评论