字符串模式匹配:求一个字符串(模式串)在另一个字符串(主串)中的位置,称为字符串模式匹配
KMP算法时间复杂度: O(n+m)
核心思想:当一趟匹配过程中出现字符不匹配时,不需要回溯主串的指针,而是利用已经得到的“部分匹配”,将模式串尽可能多地向右“滑动”一段距离,然后继续比较。
1.暴力算法
public static int kmpMatch(String s, String t){
char[] s_arr = s.toCharArray();
char[] t_arr = t.toCharArray();
int i = 0, j = 0;
while (i < s_arr.length && j < t_arr.length){
if(s_arr[i] == t_arr[j]){
i++;
j++;
} else{
i = i - j + 1;
j = 0;
}
}
if(j == t_arr.length)
return i-j;
else
return -1;
}
2. KMP 算法
寻找最长前缀后缀:
ABCDABD 最长后缀:
ABCDABD next 值:相当于“最大长度值” 整体向右移动一位,然后初始值赋为-1
public static int[] getNextArray(char[] t) {
int[] next = new int[t.length];
next[0] = -1;
int k = -1;
int j = 0;
while (j < t.length - 1)
{
//p[k]表示前缀,p[j]表示后缀
if (k == -1 || t[j] == t[k])
{
++k;
++j;
next[j] = k;
}
else
{
k = next[k];
}
}
return next;
}
public static int kmpMatch(String s, String t){
char[] s_arr = s.toCharArray();
char[] t_arr = t.toCharArray();
int[] next = getNextArray(t_arr);
int i = 0, j = 0;
while (i<s_arr.length && j<t_arr.length){
if(j == -1 || s_arr[i]==t_arr[j]){
i++;
j++;
}
else {
j = next[j];
}
}
if(j == t_arr.length)
return i-j;
else
return -1;
}