m基于PID控制算法的四旋翼无人机飞行控制simulink仿真

文章介绍了基于PID控制器的四旋翼无人机姿态控制系统的MATLAB仿真。PID控制器通过比例、积分和微分调整实现对无人机的稳定控制,文章详细阐述了PID各参数的作用,并给出了无人机的动力学模型参数及核心MATLAB代码片段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.算法描述

2.仿真效果预览

3.MATLAB核心程序

4.完整MATLAB


1.算法描述

  无人机采用常见的四旋翼无人飞行器,如图1所示。

      PID控制器,即控制器的控制方式为P比例调整,I积分调整以及D微分调整三个部分构成,PID控制器是目前为止应用最为广泛的控制方式。PID控制器具有结构简单,性能稳定,参数设置简单等优势。PID控制器适用于各种控制对象无法进行测量获得系统参数的情况,其根据控制对象的输出和参考控制变量的输入差进行实时的调整实现对未知参数控制对象的有效控制。PID控制器由比例调整模块,积分调整模块以及微分调整模块三个部分构成,那么其输入的误差信号e(t)与输出u(t)的关系为公式6

 

       公式4.15中,参数kp表示的是比例调整模块的系数,其作用是将系统的反馈误差e(t)根据参数 kp进行调节,使得调整后的控制对象的反馈误差减小。当比例系数kp​​​​​​​取较大值的时候,那么控制器的调整速度较快,但是其抖动也较大,从而导致系统了不稳定性。当比例系数kp取较小值的时候,那么控制器调整速度较慢,但调整过程较为稳定。

       参数ki​​​​​​​表示的是积分调整模块的系数,其作用将消除系统中存在的稳态误差,当存在稳态误差的时候,通过积分调节模块进行调节,直到完全消除稳态误差为止,之后积分调节功能停止工作,积分调节模块输出一个固定值。当积分调制系数ki​​​​​​​较小的时候,积分调节作用越强,反之,积分调节作用较弱,系统调整速度较慢。

      参数kd表示的是微分调整模块的系数,其主要是对系统反馈误差的变化率进行调整,其具有超前调整功能,可以预测系统反馈误差的变化率,因此可以在反馈误差产生之间将误差消除,因此通过设置微分调整参数,可以降低PID控制器的超调量,并加快系统的调整速度。

2.仿真效果预览

matlab2022a仿真结果如下:

    对无人机姿态控制系统进行建模,整个系统主要包括三个核心模块,无人机空间位置控制模块,无人机姿态控制模块以及无人机动力学模块。仿真的无人机仿真参数如下所示:

参数

单位

质量m

Kg

0.468

半轴距l

m

0.225

阻力系数 kd

N*m/rpm^2

1.5*10^-9

升力系数 kt

N/rpm

6.11*10^-8

X轴转动惯量 Ix

Kg*m^2

0.004856

Y轴转动惯量 Iy

Kg*m^2

0.004856

Z轴转动惯量 Iz

Kg*m^2

0.008801

 

 

 

 

3.MATLAB核心程序

        无人机模型主要包括目标输入模块,位置控制模块,姿态控制模块,姿态转化为控制量模块以及动力学模块五个部分。其中,无人机的核心模块是采用6DOF (Euler Angles)建模,6DOF(Euler Angles) 模块充分考虑了物体固定坐标系(Xb、Yb、Zb)相对于地球参考系(Xe、Ye、Ze)的旋转因素。无人机固定坐标系的原点是无人机的重心,无人机被假定为刚性,这一假设消除了考虑单个质量元件之间作用力的必要性。平面地球参考系被认为是惯性系,并且忽略由于地球相对于太阳的公转运动而产生的力。该模型,主要通过输入初始的Roll,Pitch,Yaw,初始的p,q,r,以及XYZ轴的转动惯量 Ix,Iy,Iz。其中,Roll,Pitch,Yaw,p,q和r的初始值均设置为零,转动惯量Ix,Iy,Iz设置根据表1的参数设置。

....................................................................
m       = 0.468;
g       = 9.8;
Ixx     = 0.004856;
Iyy     = 0.004856;
Izz     = 0.008801;
L       = 0.225;
kd      = 1.5*10^-9;
kt      = 6.11*10^-8;
 
%姿态角和位置的六个PID控制器未训练的参数
%PID x
kpx     = 0.8;
kix     = 1e-4;
kdx     = 1.3;
%PID y
kpy     = 0.8;
kiy     = 3e-4;
kdy     = 1.3;
%PID z
kpz     = 1.2;
kiz     = 1e-6;
kdz     = 2;
%PID phi
kpphi   = 2000;
kiphi   = 0;
kdphi   = 4000;
%PID theta
kptheta = 2000;
kitheta = 0;
kdtheta = 4000;
%PID psi
kppsi   = 800;
kipsi   = 0;
kdpsi   = 400;
05_065_m

4.完整MATLAB

V

### 四旋翼无人机内外环控制算法Simulink中的仿真 #### 内外环控制架构概述 四旋翼无人机飞行控制系统通常采用双闭环结构,即内环和外环。内环主要负责姿态稳定,而外环则用于位置跟踪控制。 - **内环(Attitude Control Loop)**:该部分专注于调节四旋翼的姿态角(俯仰、滚转和偏航),使实际角度尽可能接近期望值。这一步骤对于维持稳定的飞行至关重要。 - **外环(Position Control Loop)**:在此基础上进一步处理空间坐标系下的位移指令,通过改变高度以及水平方向的速度来达到指定的位置目标[^1]。 #### 动力学建模与控制器设计 为了实现精确的轨迹跟随,在构建Simulink模型之前,先要定义好六自由度的动力学方程组。这些方程式描述了物体如何响应外部力矩的作用发生旋转和平动变化。具体来说: - 质心加速度由重力分量加上升力贡献构成; - 角加速度取决于各个电机产生的扭矩总和减去阻尼项的影响; 接着便是根据上述理论框架搭建相应的PID或其他类型的反馈补偿器作为核心组件参与到整个体系当中[^4]。 #### Simulink 实现细节 下面给出一段简化版Matlab/Simulink代码片段用来说明怎样设置这样一个复杂的嵌套式回路系统: ```matlab % 创建一个新的SIMULINK模型文件 new_system('quadrotor_control'); % 添加必要的模块库到当前工作区 addpath(fullfile(matlabroot,'toolbox','aero','aerodemos')); % 构造基本框架... open_system('quadrotor_control'); set_param(gcs, 'SimulationCommand', 'update'); % 更新显示界面布局 % 插入子系统框图代表内部/外部两个独立却又关联紧密的部分 add_block('simulink/Commonly Used Blocks/Gain',... 'quadrotor_control/PID Position Controller',... 'Value',[kp_pos; ki_pos; kd_pos]); add_block('simulink/Commonly Used Blocks/SubSystem',... 'quadrotor_control/Internal Attitude Stabilization',... 'MaskDisplay','InnerLoop Attitude Regulator'); ``` 这段脚本仅展示了初始化过程的一部分——创建新的空白项目并引入一些预设好的功能单元以便后续开发人员能够快速上手操作。完整的工程可能还会涉及到更多高级特性比如自适应增益调度或是非线性估计方法等[^3]。 #### 可视化与验证 最后但同样重要的是,利用MATLAB内置工具集如`plot()`函数绘制实时曲线图表监控各物理参数随时间演化的趋势;或者借助第三方插件例如Unity3D引擎配合SL_3DA动画包渲染出更加直观生动的效果帮助研究人员更好地理解实验数据背后隐藏的信息价值所在[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我爱C编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值