目录
1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):
仿真操作步骤可参考程序配套的操作视频。
2.算法涉及理论知识概要
物联网(Internet of Things, IoT)技术的飞速发展使得大量设备接入网络,据统计,到 2025 年全球物联网设备数量有望突破 750 亿 。在物联网通信中,信道资源的高效利用至关重要。传统的信道接入机制在面对日益增长的物联网设备数量和复杂多变的无线环境时,表现出了诸多局限性,如信道竞争激烈、吞吐量低、延迟大等问题。为解决这些问题,引入智能的信道接入机制成为必然趋势。强化学习作为机器学习的一个重要分支,能够使智能体在与环境的交互中通过试错学习最优策略。其中,Q - learning 算法因其简单高效且不需要环境模型等优点,在物联网设备信道接入领域展现出了巨大的应用潜力 。
物联网(Internet of Things, IoT)技术的飞速发展使得大量设备接入网络,据统计,到 2025 年全球物联网设备数量有望突破 750 亿 。在物联网通信中,信道资源的高效利用至关重要。传统的信道接入机制在面对日益增长的物联网设备数量和复杂多变的无线环境时,表现出了诸多局限性,如信道竞争激烈、吞吐量低、延迟大等问题。为解决这些问题,引入智能的信道接入机制成为必然趋势。强化学习作为机器学习的一个重要分支,能够使智能体在与环境的交互中通过试错学习最优策略。其中,Q - learning 算法因其简单高效且不需要环境模型等优点,在物联网设备信道接入领域展现出了巨大的应用潜力 。
2.1 物联网设备信道接入面临的挑战
随着物联网的普及,各类设备如智能家居设备、工业传感器、可穿戴设备等大量接入网络。以智能家居场景为例,一个普通家庭可能拥有数十个甚至上百个物联网设备,如智能灯泡、智能门锁、智能摄像头、环境监测传感器等。如此庞大数量的设备同时竞争有限的信道资源,必然导致信道冲突加剧,信道利用率降低 。
无线信道易受到多径传播、阴影衰落、干扰等因素的影响,导致信道状态动态变化。在城市环境中,建筑物的遮挡会造成信号的阴影衰落,使得信道增益大幅下降;而在工业环境中,大量的电磁干扰源会对无线信号产生干扰,进一步恶化信道质量。这种复杂多变的无线环境增加了物联网设备准确选择优质信道的难度 。
不同类型的物联网应用对服务质量有着不同的要求。例如,对于实时视频监控应用,需要高带宽、低延迟的信道以保证视频的流畅传输;而对于一些周期性上报数据的环境监测传感器,对延迟的要求相对较低,但对数据传输的可靠性有较高要求。如何在满足不同应用 QoS 需求的前提下,实现信道资源的高效分配是物联网信道接入面临的又一挑战 。
2.2 Q-learning强化学习原理
Q-learning 是一种基于值函数的强化学习算法,其核心思想是让智能体通过与环境进行交互,学习到一个动作价值函数(Q 函数),该函数表示在某个状态下采取某个动作所能获得的长期累积奖励的期望 。
Q函数定义为在状态s下采取动作 a所能获得的长期累积奖励的期望,记为 Q(s,a)。Q-learning 通过不断更新 Q 值来逼近最优的 Q 函数。其更新公式为:
Q(st,at)←Q(st,at)+α[R(st,at,st+1)+γa′maxQ(st+1,a′)−Q(st,at)]
动作选择策略
在实际应用中,智能体需要根据当前的Q值来选择动作。常用的动作选择策略有ϵ−greedy策略。在ϵ−greedy策略中,智能体以概率ϵ随机选择一个动作,以概率1−ϵ选择当前 Q 值最大的动作。即:
其中,ϵ是一个较小的正数,通常随着学习过程逐渐减小。在学习初期,ϵ较大,比如ϵ=0.5,此时智能体有较大概率随机选择动作,这有助于智能体充分探索环境,发现各种可能的状态 - 动作组合,避免陷入局部最优解。随着学习的深入,ϵ逐渐减小,如减小到ϵ=0.1,智能体更多地选择当前 Q 值最大的动作,即利用已经学习到的经验来获取最大收益。通过这种动态调整ϵ的方式,智能体能够在探索和利用之间找到平衡,提高学习效率。
动作空间定义
动作空间A定义为物联网设备可以选择的信道接入动作。在每个状态下,设备可以从可用信道集合C中选择一个信道进行数据传输,即A={a1,a2,⋯,anumchannels},其中ai表示选择信道ci进行传输。这与代码中的实现逻辑一致,设备通过选择ai来确定使用哪个信道进行数据发送。
基于Q-learning 的物联网设备信道接入算法流程如下:
初始化:初始化Q值表 Q(s,a) ,所有元素初始化为0;设置学习率 α 、折扣因子 γ 、 ϵ−greedy策略中的ϵ值;初始化状态 s。
动作选择:根据当前状态 s,利用 ϵ−greedy策略选择动作 a。
执行动作并观察结果:设备执行动作a,即选择信道a进行数据传输,观察传输结果,得到新的状态 s′和奖励 R(s,a,s′)。
Q 值更新:根据Q值更新公式,更新Q值表中的 Q(s,a):
Q(s,a)←Q(s,a)+α[R(s,a,s′)+γa′maxQ(s′,a′)−Q(s,a)]
状态更新:将当前状态s更新为新状态 s′ ,即 s←s′。
判断是否结束:如果达到预设的学习次数或者系统性能收敛,则算法结束;否则返回步骤 2 继续进行学习 。
3.MATLAB核心程序
Q_tables{i}(current_channel) = Q_tables{i}(current_channel) + alpha * (rewards(i) + gamma * max(Q_tables{i}) - Q_tables{i}(current_channel));
% 输出最终的Q - table
for i = 1:num_devices
fprintf('Device %d Q - table:\n', i);
disp(Q_tables{i});
end
save Q.mat Q_tables0 Q_tables qos_requirements resource_cost num_devices num_channels
% 绘制训练阶段的性能指标曲线
figure;
plot(1:num_episodes, smooth(total_rewards_per_episode,4));
xlabel('Episode');
ylabel('总奖励');
figure;
plot(1:num_episodes, smooth(collision_rate_per_episode,4));
xlabel('Episode');
ylabel('碰撞率');
figure;
plot(1:num_episodes, smooth(channel_utilization_per_episode,4));
xlabel('Episode');
ylabel('信道利用率');
figure;
plot(1:num_episodes, smooth(qos_satisfaction_rate_per_episode,4));
xlabel('Episode');
ylabel('QoS满意度');
figure;
plot(1:num_episodes, smooth(total_resource_consumption_per_episode,4));
xlabel('Episode');
ylabel('总资源消耗');
0Z_019m
4.完整算法代码文件获得
V