频率和概率、平均值和期望值

本文探讨了概率、频率和期望值这三个概念的区别。概率是理论上的理想值,而频率是实际实验中的观察值,当实验次数趋向无穷大时,频率接近概率。期望值则是随机变量的平均值,随着样本数量增加,期望值趋近于均值。通过大量实验,频率可作为概率的估计,而均值则可视为期望值的近似。大数定律表明,这些值在大量重复试验中趋于稳定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

频率和概率


频率和概率是不同的概念,我们经常把频率说成了概率。
 
如:当我们抛一枚硬币100次,出现40次正面朝上,60次反面朝上,这时有人说,正面朝上的概率是 2/5,这就是没能将频率和概率区分出来。
 
在上面这个例子中,关于40次出现正面朝上,只能说正面朝上的频率是 2/5,而不能说概率是 2/5。
 
概率是理想值,频率是实验值。
 
概率指的是,在所有发生的事件中,某一个事件发生的次数占所有事件次数的百分比。这里的“所有发生的事件”,在现实中几乎是无法统计的,如:统计从古至今所有人抛硬币的数量、统计全国的民众对某个政策的满意度等,因此,通常的做法是通过大量的实验或抽样样本来估算出总体的概率值。
 
例如:抛硬币100次,出现正面的频率是 3/10,如果是1000次,出现正面的频率是 4/10,如果是10000次,出现正面的频率是5/10,也就是抛硬币的次数越多,频率值越接近1/2,这时的频率值就可以作为概率值。
 
对于概率的定义:
 
对某一随机现象进行了n次试验,其中A事件出现了m次,即其出现的频率为 m/n。经过大量反复试验,频率m/n越来越接近于某个确定的常数,该常数即为事件A出现的概率,常用P (A) 表示。
 
因此,根据大数定理可以认为在无穷多次试验中的频率值无限收敛于概率值。
 

平均值和期望值


我们经常也会把均值和期望搞混,实际上这两个也是不同的概念。
 
均值
 
均值就是对试验结果进行求和后除以结果数量。比如有n个实验结果 X:x1,x2,x3.....xn,那么均值计算是:
 

均值是观察样本的平均值,通常抽样样本是不同的,所以不同样本的均值是不同的,但是对于同一个随机变量 X 来说,期望是唯一的,这就是它们的本质区别。

 
期望值
 
离散型随机变量X的取值为:

 
X对应取值的概率:

X对应取值的频率:

则期望值计算是:

例子,掷一枚六面骰子的期望值是 3.5,计算如下:
 

1 * 1/6 + 2 * 1/6 + 3 * 1/6 + 4 * 1/6 + 5 * 1/6 + 6 * 1/6 = 3.5

均值和期望的联系也是大数定理联系起来的。随着重复次数接近无穷大,事件的平均值无限收敛于期望值。
 

总结


概率是频率随样本趋于无穷的极限。
 
期望值就是平均值随样本趋于无穷的极限。
 
 
### Simulink 中平均值模型与详细值模型的区别 #### 平均值模型的特点 平均值模型主要用于简化复杂电力电子系统的仿真过程。这类模型通过忽略高频开关行为,仅保留低频动态特性来减少计算量提高仿真速度。具体来说,在MMC整流器的应用中,使用平均值模型可以更好地处理较大的采样时间间隔,同时保持对系统主要动态特性的精确描述[^3]。 对于电压源型换流器(VSC),当选用平均值建模方法时,不再关注具体的半导体器件工作状态变化,而是利用参考信号(uref)表达电桥各相输出的期望平均电压水平。这种方法能够有效降低仿真的复杂度,并且适合于研究长时间尺度下的稳态性能以及控制算法设计等问题。 ```matlab % 定义 MMC 整流器模型参数 (基于平均值模型) numLevels = 19; % 设定电平数量 modelParams.avgModel = true; ``` #### 详细值模型的特点 相比之下,详细值模型则更加注重电路内部的具体物理过程,特别是功率半导体元件的工作细节。这种类型的模型会考虑所有的瞬变现象,包括但不限于开关动作引起的电流突变谐波分量的影响。因此,虽然其准确性更高,但由于涉及到大量的非线性方程求解,通常会导致较长的仿真时间较高的资源消耗。 在某些情况下,比如评估新型拓扑结构的设计可行性或是探究特定条件下可能出现的小概率事件时,可能更倾向于选择详细的数值模拟方式来进行深入分析。 ```matlab % 定义 MMC 整流器模型参数 (基于详细值模型) modelParams.detailedModel = true; switchingFreq = 1e3; % 设置开关频率 harmonicAnalysisEnabled = true; ``` --- ### 应用场景对比 | 特征/应用 | **平均值模型** | **详细值模型** | | --- | --- | --- | | **适用范围** | 主要适用于宏观层面的研究,如控制系统优化、长期稳定性测试等 | 更加贴近实际硬件环境,可用于微观机制探索、故障诊断等领域 | | **优点** | 计算效率高;易于实现大规模网络级联仿真 | 能够捕捉到更多细微之处;有助于理解底层运作原理 | | **缺点** | 可能丢失部分重要的暂态信息 | 实现成本较高;运行耗时较长 | 综上所述,针对不同的工程实践需求,合理选取合适的建模策略至关重要。如果目标是在短时间内获得较为粗略但足够指导决策的结果,则优先推荐采用平均值模型;而若是追求极致的真实性全面性,则应转向更为精细详尽的详细值模型进行探讨[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值