NLP TASK7 卷积神经网络

学习内容

卷积运算的定义、动机(稀疏权重、参数共享、等变表示)。一维卷积运算和二维卷积运算。
池化运算的定义、种类(最大池化、平均池化等)、动机。
Text-CNN的原理。
利用Text-CNN模型来进行文本分类。

内容笔记

卷积

卷积定义:
卷积是一类数学运算,通常计算方式为:
s ( t ) = ( x ∗ w ) ( t ) = ∑ a = − ∞ ∞ x ( a ) w ( t − a ) s(t)=(x*w)(t)=\sum_{a=-\infty}^\infty x(a)w(t-a) s(t)=(xw)(t)=a=x(a)w(ta)
二维上计算方式为:
S ( i , j ) = ( I ∗ K ) ( i , j ) = ∑ m ∑ n I ( m , n ) K ( i − m , j − n ) S(i,j)=(I*K)(i,j)=\sum_m \sum_n I(m,n)K(i-m,j-n) S(i,j)=(IK)(i,j)=mnI(m,n)K(im,jn)

动机:
稀疏表示,减少计算,存储压力。
参数共享–绑定的权重。在一个模型的多个函数中使用相同的参数。
平移等变–输入改变,输出也以同样的方式改变。

一维卷积图示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值