乱乱的,无题

作者分享了自己在面临保研抉择时内心的挣扎与迷茫,表达了对于未来的不确定感及对稳定生活的渴望。同时,也提到要通过努力来减少遗憾。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这几天在想着保研的事情,心里乱极了,也不知道这样的决定是对还是错,一句话,还是得尝试,想想根本没有机会,都不知道要做点什么,日子就这样漫不经心的过去,感觉日子少了激情,生活不知道该怎么样去演绎,闯荡社会真的没有想的那么容易,在以后的日子里,希望能少一分浮躁,多一分淡定。话说无欲则刚,但是有几人能做到,有时候我再想也许前世我是一诗人。只能说一路走来,有很多坎坷,并不顺利,但愿以后的日子能顺凤顺水。懒惰的人啊,何时能够长大,无聊的生活,今后该如何去演绎,只能为自己祈祷,同时也祝福同学们能够为未来努力,享受幸福。中秋了,本打算回家和老爸,老妈一起聚聚,也事情还在拖着,今天老板说还要面试,真不晓得结果会是什么样子,不敢去想,也懒得去想。只能祈祷上帝能给我这样懒惰的人一次机会,让我能为自己的理想而去奋斗,这样长时间的折磨,我怕我会坚持不住怕对未来失去信心,其实每个人都能够很清楚看透别人,劝别人怎样去面对生活,当面对真实的自己时,往往不知所措。日子匆匆而过,想想明天,怕怕,看今天,后悔。人该怎么样去生活。当我在篮球场上奔跑时,我会忘记一切,也许不一定,或许会想到kobe,那个坚强的男人。真不知道我还能坚持多久,现在回想发现自己是一个那么脆弱的人,自小在爸妈的保护下成长。

一想到保研这样的事情,其实没什么期待的,很多人选择放弃,其实我也明白,出去闯荡三年或许是最好的选择,但当有一丝机会来敲门时,人往往又会动心。就像当你感到寂寞无聊的时候,你会想到某个女孩对你的好。

其实生活就是是这样,前提你要倾注你的努力,或许你才会略有所获,其实没什么可以选择的,只有努力生活,保持一颗虔诚的心,偶尔嚣张下,偶尔放纵下,这才是我想要的生活,或许三年前的一次选择,注定一生的遗憾。但是此时又能做什么呢,于是我只能选择努力让将来的自己不后悔。想想技术,想想未来,我有点茫然。最近日子有着太多的放纵,任由日子从指尖滑过,只是想到和朋友的约定,我很无奈。

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,广泛应用于图像处理、计算机视觉和模式识别等领域。物体识别是OpenCV的一个重要应用场景,以下是一些常见的物体识别方法和技术: 1. **特征提取与匹配**: - **SIFT(尺度不变特征变换)**和**SURF(加速稳健特征)**:这些算法用于检测和描述局部特征,能够在图像中识别出相同的物体,即使它们的大小、旋转或光照条件发生变化。 - **ORB(定向快速旋转BRIEF)**:一种快速的特征检测和描述算法,适用于实时应用。 2. **模板匹配**: - 通过在图像中滑动一个模板(已知物体的图像),并计算模板与图像区域的相似度,来找到物体的位置。 3. **机器学习与深度学习**: - **支持向量机(SVM)**:用于分类和回归分析,可以用于物体识别任务。 - **卷积神经网络(CNN)**:深度学习模型,特别适合处理图像数据,能够自动学习图像的特征并进行分类。 4. **目标检测算法**: - **Haar级联分类器**:基于积分图和AdaBoost算法,用于实时人脸检测。 - **YOLO(You Only Look Once)**和**SSD(Single Shot MultiBox Detector)**:实时目标检测算法,能够在单次前向传播中同时进行目标定位和分类。 5. **实例分割**: - **Mask R-CNN**:在目标检测的基础上,进一步分割出目标的精确轮廓。 OpenCV提供了丰富的API和工具,可以方便地实现上述方法。以下是一个简单的示例代码,展示如何使用OpenCV进行模板匹配: ```python import cv2 import numpy as np # 读取原始图像和模板图像 original_image = cv2.imread('original_image.jpg') template = cv2.imread('template.jpg') template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY) w, h = template_gray.shape[::-1] # 转换为灰度图 gray_original = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) # 模板匹配 result = cv2.matchTemplate(gray_original, template_gray, cv2.TM_CCOEFF_NORMED) threshold = 0.8 loc = np.where(result >= threshold) # 绘制矩形框 for pt in zip(*loc[::-1]): cv2.rectangle(original_image, pt, (pt[0] + w, pt[1] + h), (0, 255, 255), 2) # 显示结果 cv2.imshow('Detected', original_image) cv2.waitKey(0) cv2.destroyAllWindows() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值