从模型复杂度角度来理解过拟合现象

一、什么是模型复杂度

机器学习是通过学习训练集的数据从而得到具体的模型,最终达到预测未知数据的能力;这就涉及到模型对训练数据的拟合能力了;从数理统计的角度来看,不同的训练数据集会有不同的概率分布规律;只有我们的模型的具有表达训练集的数据分布规律的能力才能训练得到一个好的模型,而模型的这个能力就是模型复杂度;

二、从泰勒中值定理看模型复杂度

对于一些比较复杂的函数,为了便于计算和研究,往往希望将其用一些简单的函数来近似表达。多项式是最为简单的一类函数,它只要对自变量进行有限次的加、减、乘三种算术运算,就能求出其函数值。因此多项式经常被用于近似地表达函数,这种近似表达在数学上称为多项式逼近。

英国数学家泰勒在多项式逼近方面做出了开创性贡献。 他的研究结果表明:具有n+1阶导数的函数在一个点的邻域内的值可以用函数在该点的函数值及各阶导数值组成的n次多项式近似表达,即泰勒中值定理。

泰勒中值定理

如果函数f(x)在含有x0的开区间(a,b)内具有直到n+1阶的导数,则对任一x∈(a,b),有

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+R_{n}(x) f(x)=f(x0)+f(x0)(xx0)+2!f(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值