
Python数据分析
文章平均质量分 96
专注用Python解锁数据分析全流程:Pandas清洗、NumPy运算、Matplotlib/Seaborn可视化、机器学习实战。每篇附源码与案例,10分钟掌握一个技巧,助你从入门到精通。
酒城译痴无心剑
国家三级笔译。一手代码一手诗,酸甜苦辣寸心知。杏坛泊梦千秋事,万古云山日迟迟。讲授高等数学、Java高级程序设计、动态网站设计与开发(JSP、Servlet)、企业信息系统设计与开发(Spring Boot)、智能移动终端应用开发(Android)、Python Web开发(Django)、大数据离线分析(Hadoop、Hive、Spark)、计算机专业英语等课程,教学深入浅出,语言生动、经验丰富,深受学生好评。指导学生参加移动应用开发省赛和国赛,多次获奖,被授予优秀指导教师称号。热爱翻译,曾翻译西奥尼·帕帕斯数学科普读物《天天数学》与两千余首诗词,已形成独特的译诗风格。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
数据可视化基础
数据可视化是指将数据以图表的形式表示,并利用数据分析和开发工具发现其中未知信息的处理过程。原创 2025-08-05 10:39:32 · 40 阅读 · 0 评论 -
数据聚合与分组计算
本文主要针对Pandas的分组聚合和其它组内运算进行了介绍,包括分组与聚合的原理、分组操作、聚合操作,以及其它分组级的相关操作,最后介绍了一个分析运动员基本信息的案例,真实地演示如何运用这些知识。大家在学习与理解的同时,要多加练习,可根据具体情况选择合理的技术进行运用即可。原创 2025-08-05 10:30:21 · 31 阅读 · 0 评论 -
数据预处理基础
本文介绍了Pandas的数据预处理,包括数据清洗、数据合并、数据重塑和数据转换,并结合预处理部分地区信息的案例,讲解了如何利用Pandas预处理数据。数据预处理是数据分析中必不可少的环节,希望大家要多加练习,并能够在实际场景中选择合理的方式对数据进行预处理操作, 另外还可以参考官网提供的文档深入地学习。原创 2025-08-05 10:23:14 · 29 阅读 · 0 评论 -
Pandas数据分析工具基础
主要针对Pandas库的基础内容进行了介绍,包括常用的数据结构、索引操作、算术运算、数据排序、统计计算与描述、层次化索引和读写数据操作等,并结合北京高考分数线的分析案例,讲解如何使用Pandas操作数据。通过本节学习,希望大家可以用Pandas实现简单地操作,为后续深入地学习打好扎实的基础。原创 2025-08-05 10:08:00 · 32 阅读 · 0 评论 -
Numpy科学计算库基础
主要针对科学计算库NumPy进行了介绍,包括ndarry数组对象的属性和数据类型、数组的运算、索引和切片操作、数组的转置和轴对称、NumPy通用函数、线性代数模块、随机数模块以及使用数组进行数据处理的相关操作。通过本节的学习,希望大家能熟练使用NumPy包,为后续学习奠定基础。原创 2025-08-05 09:43:21 · 148 阅读 · 0 评论 -
数据分析概述
本文系统介绍了数据分析的基础知识、工具安装与使用。首先阐述了大数据时代数据分析的重要性,包括其在商业、科研等领域的应用。接着详细讲解了数据分析的分类(描述性、探索性、验证性)和流程(目标设定、数据收集、清洗、分析、结果呈现)。文中还详细介绍了Anaconda集成开发环境的安装与管理,包括下载、安装、启动Anaconda Prompt、管理Python包等操作。此外,讲解了Spyder和Jupyter Notebook的使用方法,包括启动、编写代码、交互式操作以及绘制函数图像等实战内容。最后通过课后习题巩固知原创 2025-08-05 09:33:55 · 123 阅读 · 0 评论