25、自然语言处理中的文本预处理与分析技术

自然语言处理中的文本预处理与分析技术

1. 正则表达式分词

在自然语言处理(NLP)中,分词是一项基础任务。可以使用正则表达式来实现分词。以下是使用 nltk 库中的 regexp_tokenize 函数进行分词的示例代码:

# Import the RegEx tokenizer
from nltk import regexp_tokenize as rx_tok
rx_pattern1 = '\w+'
rx_tok(stwtr[4],rx_pattern1)

上述代码使用正则表达式 \w+ 过滤出仅包含字母数字字符的单词,不包含标点符号。若想同时检测和过滤包含字母数字字符和标点符号的单词,可以使用另一个正则表达式:

# Create Rx pattern2 and perform the RX tokenize again
rx_pattern2 = '\w+|[!,\-,]'
rx_tok(stwtr[4],rx_pattern2)

2. 词干提取(Stemming)

2.1 什么是词干提取

词干提取通常是从单词中去除前缀或后缀,如 -er -ion -ization 等,以提取单词的基本或词根形式。例如, computers </

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值