基于arcpro3.0.2版的使用深度学习目标提取之建筑房屋
采用像素分类方法,像素分类一般把多边形详细轮廓给标注出来,
而目标检测就标注出对象大致矩形框就行,
本次训练结果:采用GPU显卡Nivda 1080 训练模型图
20个周期+GPU训练
(一)打开 使用深度学习分类像素 (Image Analyst),
classify-pixels-using-deep-learning
采用像素分类方法 参数
输入栅格为要检测的影像
模型定位为上一步输出的outBuildingDeepLabV3_ResNet34.dlpk文件
cpu模式+Max Overlap Ratio=0 、Max Overlap Ratio=0.4
运行时间:3个小时,
输出红色区域为预测房屋的栅格文件tif
(二)采用DeepLapV3+Backbone: resNet34+20个Epochs+GPU训练
生成的模型评价指标 F1=0.94
(