基于arcpro3.0.2版的使用深度学习目标提取之建筑房屋

基于arcpro3.0.2版的使用深度学习目标提取之建筑房屋
采用像素分类方法,像素分类一般把多边形详细轮廓给标注出来,
而目标检测就标注出对象大致矩形框就行,

本次训练结果:采用GPU显卡Nivda 1080 训练模型图
20个周期+GPU训练
在这里插入图片描述
(一)打开 使用深度学习分类像素 (Image Analyst),
classify-pixels-using-deep-learning
采用像素分类方法 参数
输入栅格为要检测的影像
模型定位为上一步输出的outBuildingDeepLabV3_ResNet34.dlpk文件
cpu模式+Max Overlap Ratio=0 、Max Overlap Ratio=0.4
运行时间:3个小时,
输出红色区域为预测房屋的栅格文件tif
在这里插入图片描述
在这里插入图片描述
(二)采用DeepLapV3+Backbone: resNet34+20个Epochs+GPU训练
生成的模型评价指标 F1=0.94
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值