elastic search中父子关系文档

本文探讨了Elasticsearch中父子文档的关系,解释了为何采用父子关系建模能提高性能,并通过实例展示了如何创建、填充和搜索父子文档。通过设置_parent字段确保父子文档位于同一分片,从而在查询时保持高性能。文章还提到了祖孙三层文档模型的路由策略,以及如何应对特定的查询需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、为什么要有父子文档?

(1)、nested object的数据建模,是采取类似冗余数据的方式,将多个数据都放在一起,维护成本就比较高;

(2)、parent-child数据建模,采取的是类似于关系型数据库的三范式,多个实体都分割开来,每个实体之间都通过一些关联方式,进行了父子关系的关联,各种数据不需要都放在一起,父doc和子doc分别在进行更新的时候,都不会影响对方;

为什么父子文档性能好?虽然数据实体之间分割开来,但是我们在搜索的时候,由es自动为我们处理底层的关联关系,并且通过一些手段保证搜索性能。

2、父子文档核心:父子关系元数据映射,用于确保查询时候的高性能,但是有一个限制:父子数据必须存在于一个shard中;(多个type之间有父子关系,用_parent指定父type);

父子关系数据存在一个shard中,而且映射其关联关系的元数据,因此在搜索父子关系数据的时候,不用跨分片。

3、实例:一个IT公司有多个研发中心,每个研发中心有多个员工

(1)、建立mapping

PUT /company
{
  "mappings": {
    "rd_center": {},
    "employee": {
      "_parent": {
        "type": "rd_center" 
      }
    }
  }
}

在员工employee中定义一个_parent,类型为部门rd_center

在员工employee中定义一个_parent,类型为部门rd_center

(2)、填充部门数据

POST /company/rd_center/_bulk
{ "index": { "_id": "1" }}
{ "name": "北京研发总部", "city": "北京", "country": "中国" }
{ "index": { "_id": "2" }}
{ "name": "上海研发中心", "city": "上海", "country": "中国" }
{ "index": { "_id": "3" }}
{ "name": "硅谷人工智能实验室", "city": "硅谷", "country": "美国" }

(3)、填充员工employee数据:

PUT /company/employee/1?parent=1 
{
  "name":  "张三",
  "birthday":   "1970-10-24",
  "hobby": "爬山"
}

parent=1指定了父文档的id,在填充employee数据的时候,shard路由并不是由employee的id=1指定的,而是由rd_center doc的id=1指定,这样才能保证父文档和子文档在一个shard上;

填充employee数据

POST /company/employee/_bulk
{ "index": { "_id": 2, "parent": "1" }}
{ "name": "李四", "birthday": "1982-05-16", "hobby": "游泳" }
{ "index": { "_id": 3, "parent": "2" }}
{ "name": "王二", "birthday": "1979-04-01", "hobby": "爬山" }
{ "index": { "_id": 4, "parent": "3" }}
{ "name": "赵五", "birthday": "1987-05-11", "hobby": "骑马" }

4、父子文档搜索

需求1:搜索有1980年以后出生的员工的研发中心

GET /company/rd_center/_search
{
  "query": {
    "has_child": {
      "type": "employee",
      "query": {
        "range": {
          "birthday": {
            "gte": "1980-01-01"
          }
        }
      }
    }
  }
}

需求2:搜索有名叫张三的员工的研发中心

GET /company/rd_center/_search
{
  "query": {
    "has_child": {
      "type":       "employee",
      "query": {
        "match": {
          "name": "张三"
        }
      }
    }
  }
}

需求3:搜索有至少2个以上员工的研发中心

GET /company/rd_center/_search
{
  "query": {
    "has_child": {
      "type":         "employee",
      "min_children": 2, 
      "query": {
        "match_all": {}
      }
    }
  }
}

需求4:搜索在中国的研发中心的员工

GET /company/employee/_search 
{
  "query": {
    "has_parent": {
      "parent_type": "rd_center",
      "query": {
        "term": {
          "country.keyword": "中国"
        }
      }
    }
  }
}

需求5:统计每个国家的喜欢每种爱好的员工有多少个

GET /company/rd_center/_search 
{
  "size": 0,
  "aggs": {
    "group_by_country": {
      "terms": {
        "field": "country.keyword"
      },
      "aggs": {
        "group_by_child_employee": {
          "children": {
            "type": "employee"
          },
          "aggs": {
            "group_by_hobby": {
              "terms": {
                "field": "hobby.keyword"
              }
            }
          }
        }
      }
    }
  }
}

5、祖孙三层的文档模型

国家-部门-员工

(1)、建立mapping

PUT /company
{
  "mappings": {
    "country": {},
    "rd_center": {
      "_parent": {
        "type": "country" 
      }
    },
    "employee": {
      "_parent": {
        "type": "rd_center" 
      }
    }
  }
}

country-rd_center-employee

(2)、填充数据

POST /company/country/_bulk
{ "index": { "_id": "1" }}
{ "name": "中国" }
{ "index": { "_id": "2" }}
{ "name": "美国" }

POST /company/rd_center/_bulk
{ "index": { "_id": "1", "parent": "1" }}
{ "name": "北京研发总部" }
{ "index": { "_id": "2", "parent": "1" }}
{ "name": "上海研发中心" }
{ "index": { "_id": "3", "parent": "2" }}
{ "name": "硅谷人工智能实验室" }

PUT /company/employee/1?parent=1&routing=1
{
  "name":  "张三",
  "dob":   "1970-10-24",
  "hobby": "爬山"
}

country用自己的id去路由;rd_center用country的id去路由;employee,如果也是仅仅指定一个parent,那么用的是rd_center的id去路由,这就导致祖孙三层数据不会在一个shard上;因此孙子辈的文档要手动指定routing,指定为爷爷辈的数据的id

需求1:搜索有爬山爱好的员工所在的国家

GET /company/country/_search
{
  "query": {
    "has_child": {
      "type": "rd_center",
      "query": {
        "has_child": {
          "type": "employee",
          "query": {
            "match": {
              "hobby": "爬山"
            }
          }
        }
      }
    }
  }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值