13、文本压缩与PPM方法详解

文本压缩与PPM方法详解

1. 文本压缩概述

文本压缩方法主要分为统计型和基于字典型两类。基于字典的方法将文本拆分为片段,存储在名为字典的数据结构中。当新文本片段与字典中的条目相同时,会在压缩流中写入指向该条目的指针,以此实现对新片段的压缩。

统计型方法则会构建文本的统计模型,常见的统计方法包含建模和编码两个阶段。在建模阶段,会为输入符号分配概率;编码阶段则依据这些概率对符号进行编码。模型可分为静态和动态(自适应)两种,大多数模型基于以下两种方法构建:
- 频率法 :根据文本符号的出现频率为其分配概率,出现频繁的符号会被赋予较短的编码。静态模型使用固定概率,而动态模型会在输入和压缩文本的过程中“即时”修改概率。
- 上下文法 :在为符号分配概率时考虑其上下文。由于解码器无法获取未来文本,编码器和解码器都只能将上下文限制在已输入和处理过的过去文本。实际上,一个符号的上下文是其前面的N个符号,这种基于上下文的文本压缩方法利用符号的上下文来预测(即分配概率),在技术上使用“N阶”马尔可夫模型。PPM方法就是基于上下文的压缩方法的典型示例,而且上下文的概念也可用于图像压缩。

部分现代基于上下文的文本压缩方法会先对输入数据进行转换,再应用统计模型为转换后的符号分配概率,如Burrows - Wheeler方法(也称为Burrows - Wheeler变换或块排序)、符号排序技术以及使用关联字典的ACB方法。

2. PPM方法基础

PPM方法是一种先进的压缩方法,最初由J. Cleary和I. Witten开发,后经A. Moffat扩展和实现。该方法基于

资源下载链接为: https://pan.quark.cn/s/67c535f75d4c 在Android开发中,为了提升用户体验和视觉效果,背景模糊化处理是一种常用的设计手段。它可以为应用界面增添层次感,同时突出显示主要内容。本文将详细介绍如何在Android中实现背景模糊化功能。 首先,我们需要获取当前设备的壁纸作为背景。这可以通过WallpaperManager类来完成。调用WallpaperManager.getInstance(this.getContext())可以获取壁纸管理器实例,然后通过getDrawable()方法获取当前壁纸的Drawable对象。接下来,需要将壁纸Drawable转换为Bitmap对象,因为模糊处理通常需要在Bitmap上进行。可以通过((BitmapDrawable) wallpaperDrawable).getBitmap()来完成这一转换。 模糊处理的核心是使用Android的RenderScript API。RenderScript是一种高效的并行计算框架,特别适合处理图像操作。在blur()方法中,我们创建了一个RenderScript实例,并利用ScriptIntrinsicBlur类来实现模糊效果。ScriptIntrinsicBlur提供了设置模糊半径(setRadius(radius))和执行模糊操作(forEach(output))的方法。模糊半径radius可以根据需求调整,以达到期望的模糊程度。 然而,仅依赖ScriptIntrinsicBlur可能无法达到理想的模糊效果,因此我们还需要对原始图片进行缩放处理。为此,我们设计了small()和big()方法。先将图片缩小(small()),然后执行模糊操作,最后再将图片放大(big())。这种方式不仅可以增强模糊效果,还能在一定程度上提高处理速度。在small(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值