API 数据导入导出的实现与问题处理
1. 松散耦合与资源一致性
松散耦合确保我们能够在 API 中重复使用数据源和目标,以导入和导出各种资源类型。在了解了结构方面的内容后,我们来探讨该模式的行为细节,首先是如何处理 API 中底层资源的一致性问题。
在导出数据时,我们需要读取要导出的整个资源集合。对于小数据集,我们可以瞬间读取所有资源,但对于大数据集,读取所有数据需要一定时间,而且不能保证导出操作能独占系统资源。那么,在导出过程中资源发生变化该怎么办呢?
有两种简单的解决方案:
- 使用存储系统的快照或事务功能 :例如,在特定时间点读取所有资源,确保导出的资源集合具有一致性。这样,导出过程中同时发生的更改不会反映在导出的数据中。但并非所有存储系统都支持这种快照功能,尤其是处理超大型数据集的系统。
- 接受数据模糊性 :即导出的数据可能不是某一时刻数据的精确表示,而是在导出操作期间对 API 中资源集合的尽力尝试。虽然这不是理想的情况,但在很多情况下是唯一的选择。
以下是一个数据模糊性的示例表格:
| 用户操作 | 导出操作 | 存储数据 | 导出数据 |
| — | — | — | — |
| 创建 A, B, C | | A, B, C | |
| | 导出 A | A, B, C | A |
| 删除 A | | B, C | A |
| | 导出 B | B, C | A, B |
| 创建 D | | B, C, D | A, B |
| 删除 C | | B, D | A,