每天五分钟深度学习pytorch:基于AlexNet模型完成手写字体识别

本文重点

前面我们学习了LeNet的搭建,本文我们学习AlexNet网络模型的搭建,然后使用它跑一遍手写字体识别的项目

AlexNet

在2012年ImageNet竞赛中以超过第二名10.9个百分点的绝对优势一举夺冠,从此深度学习重新火热起来,我们来看一下它的网络结构,它比LeNet更深,同时第一次使用激活层ReLU(没有和LeNet-5比),同时使用Dropout解决过拟合的问题。AlexNet为了增强模型的泛化能力,避免过拟合,作者使用了随机裁剪的思路对原来256×256的图像进行随机裁剪,得到尺寸为3×224×224的图像(transforms.Resize(224)就可以完成),输入到网络训练。

如图所示,受困于当时计算力的问题,所以使用了两块CPU进行了训练,然后用了很多技巧,从现在的计算力来看,我们不用这样操作了

网络模型

class AlexNet(nn.Module):

def __init__(self):

super(AlexNet,self).__init__()

self.features=nn.Sequential( nn.Conv2d(1,64,kernel_size=11,stride=4,padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值