每天五分钟深度学习框架PyTorch:算法模型的保存和加载(CPU和GPU)

本文重点

我们前面学习了模型的训练,比如线性回归,全连接神经网络,各种经典的卷积神经网络,模型训练完成之后,我们如何将训练的模型保存起来,然后方便之后的使用。pytorch已经封装好了相关的api,下面我们对此进行介绍。

保存模型的两种方式

在pytorch中使用torch.save来保存模型的结构和参数,有两种保存方式:

方式一:

torch.save(model , './model.pth ' )

方式二:

torch.save(model.state_dict(), '. /model_state.pth')

第一种方式:保存整个模型的结构信息和参数信息,保存的对象是模型model

第二种方式:只保存模型的参数,保存的对象是模型的状态

加载模型

当我们使用第一种方式保存模型的时候,我们通过下面的方式来加载模型

load_model = torch.load('model. pth' )

当我们使用第二种方式保存模型的时候,我们通过下面的方式来加载模型(先导入模型的结构再加载模型的参数信息),先导入模型结构的意思是先创建model实例对象,比如下面的model就是具体模型的实例对象

model.load_state_dict (torch.load('model_state.pth'))

实例:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值