每天五分钟深度学习:神经网络的梯度下降和反向传播算法

本文重点

在深度学习领域,神经网络通过模拟人脑神经元连接机制实现复杂模式识别与决策。其训练过程依赖两个核心算法:梯度下降用于优化模型参数,反向传播用于高效计算参数梯度。二者协同工作,构成神经网络从数据中学习的数学基础。

数学引擎

算法本质与数学原理

梯度下降通过迭代调整参数,使损失函数(如交叉熵、均方误差)逐步减小。其核心思想源于微积分中的方向导数理论:函数在某点的梯度方向是增长最快的方向,负梯度方向则是下降最快的方向。数学表达式为:

其中:

  • θ为模型参数(如权重和偏置)
  • α为学习率(控制步长)
  • J(θ)为损失函数
  • θ​表示对参数的梯度计算

链式法则

链式法则将复合函数的导数分解为多个简单函数的导数乘积。例如,对于损失函数

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值