每天五分钟深度学习:前向算损失,反向算梯度,梯度下降更新参数

本文重点

在前面的课程中,我们已经学习了神经网络的前向传播算法、神经网络的反向传播算法、以及梯度更新算法,总结来说神经网络的训练就是前向传播计算损失,反向传播计算梯度,然后梯度下降完成参数更新。本文将所有过程统一起来,来看一下整个神经网络的训练过程。

神经网络的正向传播和反向传播(单样本)

我们还是以两层的神经网络来举例,也就是说只有一个隐藏层,和一个输出层的神经网络。

神经网络的正向传播的算法的过程是这样的:

总的来说就是:先计算z[1],然后计算a[1],然后计算z[2],然后计算a[2],最后计算神经网络的损失L。

神经网络的反向传播:先算出dz[2],此时可以计算dw[2]和db[2],然后计算da[1],dz[1],进而计算dw[1]和db[1]。注意:这里我们并没有计算da,而是将其包含在了dz里面了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值