
仿真模型
文章平均质量分 89
探索前沿IT技术与仿真建模的完美融合!本专栏专注系统仿真、数字孪生、算法优化及高性能计算,涵盖工业4.0、智慧城市、AI训练等热门场景。通过实战案例拆解,助你掌握从理论到落地的全流程技能:用Python/Matlab构建动态模型。
普通网友
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于STM32H7的MPPT结合模糊PID控制实现谐振频率动态调整的仿真结构与控制逻辑研究
功率变化 dP = P - prev_P; % 变步长机制 if abs(dP) < threshold*prev_P step_size = min_step; else step_size = max_step * (1 - exp(-abs(dP)/(0.1*prev_P))); end % 预测校正机制 if sign(dP) == sign(prev_dP) step_size = 1.5 * step_size; % 加速收敛 else step_size = 0.7 * step_siz原创 2025-07-30 04:30:00 · 96 阅读 · 0 评论 -
使用YOLOv11训练种子实例分割模型并引入Group ID
本项目使用YOLOv11训练种子实例分割模型,重点解决农业研究中种子各部位(根、茎、芽)的分割与追踪问题。通过引入Group ID机制,为属于同一颗种子的不同部位分配相同标识(1-5),同时处理Reference类别(Group ID为null)。数据标注采用LabelMe工具,需遵循特定规范并转换为YOLO格式。模型在YOLOv11基础上进行改进,增加Group ID预测头和相应的损失函数,以保持同一种子各部分的一致性。该方法能精确分割和追踪种子各部位生长状态,为植物生长研究提供技术支持。原创 2025-07-30 04:00:00 · 374 阅读 · 0 评论 -
使用VSCode调试Python模型的完整指南
本文介绍了使用VSCode调试Python模型的完整指南。首先讲解了环境准备,包括VSCode安装、Python扩展配置和解释器设置。然后详细说明了基础调试配置,如创建launch.json文件和常用配置选项。文章重点介绍了基本调试操作,包括断点管理、调试工具栏使用和变量查看技巧。最后提供了高级调试方法,如条件断点、远程调试、多线程调试以及针对机器学习模型的特定调试技巧,包括训练循环、数据处理管道和模型推理的调试方法。原创 2025-07-29 23:34:31 · 14 阅读 · 0 评论 -
上市公司违约风险预测神经网络模型构建与优化
本文构建了一个基于神经网络的上市公司违约风险预测模型。项目采用Jupyter Notebook实现完整流程,包括数据预处理、模型构建与优化。首先对数据集进行探索性分析,处理缺失值并进行特征编码。接着建立基准神经网络模型,包含64-32-16三层结构,采用ReLU激活函数和Dropout正则化。模型使用Adam优化器和早停策略进行训练,并通过MSE、MAE等指标评估性能。结果显示该模型能有效预测违约风险,为后续GridSearch超参数优化奠定基础。原创 2025-07-29 10:42:37 · 229 阅读 · 0 评论 -
基于GAN的YOLOP模型对抗攻击防御系统设计与实现
本文提出了一种基于生成对抗网络(GAN)的YOLOP模型对抗攻击防御系统。针对自动驾驶等安全关键应用中目标检测模型易受对抗样本攻击的问题,系统采用Pix2Pix GAN框架构建防御模块,通过图像修复方式去除对抗扰动。研究实现了包含FGSM、PGD等多种攻击方法的对抗样本生成模块,并设计了基于U-Net的生成器和多尺度判别器架构。系统采用复合损失函数确保修复质量,在保持图像语义内容的同时有效防御对抗攻击。实验表明,该方法能显著提升YOLOP模型在对抗环境下的鲁棒性,为自动驾驶感知系统提供安全保障。原创 2025-07-29 10:28:20 · 257 阅读 · 0 评论 -
AI使能的SVD算子:基于深度学习的矩阵分解方法
本文提出了一种基于深度学习的端到端奇异值分解(SVD)神经网络架构,完全摒弃传统数值线性代数算法。该模型由矩阵编码器、奇异值预测网络和正交矩阵生成器三个核心组件构成,其中矩阵编码器采用卷积与自注意力结合的结构处理不同尺寸输入,奇异值预测网络通过特殊设计保证输出降序排列,正交矩阵生成器则基于Householder变换实现正交性约束。实验表明,该方法在多种规模矩阵分解任务中能达到与传统算法相当的精度,同时具备良好的可扩展性和并行计算优势。该技术为大规模矩阵分解问题提供了新的解决方案,特别适用于需要GPU加速的应原创 2025-07-28 18:17:04 · 244 阅读 · 0 评论 -
基于DeepSeek大模型和STM32的矿井“围压-温度-开采扰动“三位一体智能监测系统设计
摘要 本文设计了一种基于DeepSeek大模型和STM32的矿井智能监测系统,实现了对围岩压力、环境温度和开采扰动的三位一体实时监测。系统由STM32F407主控单元、多参数传感器阵列和无线通信模块构成硬件采集终端,通过LoRa/NB-IoT网络将数据传输至地面服务器。服务器端采用DeepSeek大模型进行数据分析和异常预警,并结合Python+Django框架开发了可视化监测平台。测试结果表明,系统具有高精度(压力±0.5%、温度±0.5℃)、低延迟(<2s)和智能预警(准确率>95%)等特点原创 2025-07-28 18:09:39 · 281 阅读 · 0 评论 -
基于CNN-LSTM模型的电阻与相位时间序列分析
本文提出了一种基于CNN-LSTM混合模型的电阻与相位时间序列分析方法。针对工业监测中电阻值和相位数据的多尺度性、非线性和非平稳性特点,设计了结合卷积神经网络特征提取和长短期记忆网络时序建模能力的混合架构。研究采用真实工业设备监测数据,通过多尺度卷积核捕捉不同时间尺度特征,并引入注意力机制增强关键特征权重。实验结果表明,该方法在预测精度和异常检测方面优于传统模型,为工业设备状态监测提供了有效的技术方案。原创 2025-07-28 18:08:06 · 31 阅读 · 0 评论 -
铜金矿数据分组优化系统设计与实现
本文介绍了一个铜金矿数据分组优化系统的Python实现。该系统通过两种算法(穷举法和线性规划)优化Excel数据分组,最大化总金额计算(铜货值=金吨×铜单价×系数)。系统核心包括数据结构设计(矿石记录、分组规则、分组结果)、数据加载验证模块,以及穷举算法实现。穷举法适用于小数据集(n<20),通过评估所有可能分组组合寻找最优解。系统还支持自定义分组规则并生成详细的分组摘要报告。原创 2025-07-28 18:05:16 · 77 阅读 · 0 评论 -
边缘提取算法结合深度学习的肺结节分割预测
本文提出了一种融合传统边缘提取算法与深度学习的肺结节分割方法。通过设计三通道输入网络架构,同时处理原始CT图像、边缘特征图像及其组合,结合边缘注意力模块和混合损失函数,有效提升了肺结节分割性能。实验在LIDC-IDRI数据集上进行,结果表明该方法在Dice系数等指标上优于标准U-Net,尤其改善了边缘区域的划分精度。该方法为医学图像分割提供了新思路,具有临床应用潜力。原创 2025-07-27 17:24:06 · 150 阅读 · 0 评论 -
卫星图像语义分割与区域相似度比较研究
本研究针对高分辨率卫星图像,提出一种基于MCAT-UNet的语义分割与区域相似度比较方法。首先复现并优化了MCAT-UNet模型,通过多尺度Transformer模块提升分割性能;然后收集了7个区域(每个区域约400张500m×500m图像)的数据集,训练模型并获取建筑、街道等7类地物的分割结果(mIoU指标);最后基于分割结果计算12对区域间的相似度。研究实现了完整的技术流程,包括数据预处理、模型训练调优、区域特征提取与相似度计算,为城市规划管理提供了有效的数据支持。原创 2025-07-27 17:07:44 · 167 阅读 · 0 评论 -
基于POD和DMD方法的压气机叶片瞬态流场分析与神经网络预测
文章摘要 本研究采用本征正交分解(POD)和动态模态分解(DMD)方法分析压气机叶片瞬态流场特性。POD方法通过提取能量最优的正交模态捕捉流场主要结构,DMD方法则识别与特定频率相关的动态模态。研究首先对高时空分辨率的CFD数据进行预处理和质量控制,随后构建快照矩阵并计算POD模态与特征值。通过比较两种方法的分解结果,揭示了压气机流场的能量分布和动态特性。最后基于分解结果建立神经网络预测模型,实现对复杂流场的快速重构与预测。该方法为压气机流场分析和性能优化提供了有效工具。原创 2025-07-26 23:20:35 · 155 阅读 · 0 评论 -
AI使能的SVD算子:基于深度学习的矩阵分解方法
奇异值分解(Singular Value Decomposition, SVD)是线性代数中一种重要的矩阵分解方法,广泛应用于信号处理、数据降维、推荐系统等领域。传统SVD算法虽然精确,但在处理大规模矩阵时面临计算复杂度高、内存需求大等问题。本文提出了一种基于深度学习神经网络的SVD算子实现方法,完全摒弃传统数值算法,仅使用PyTorch框架构建的神经网络模型来完成大规模信道矩阵的SVD分解与还原。原创 2025-07-26 23:18:16 · 363 阅读 · 0 评论 -
运筹优化模型开发:多项目资源分配与调度优化
本文提出了一种基于混合整数线性规划(MILP)的多项目资源分配与调度优化模型,用于解决包含两类项目(短期高收益型和长期稳定型)的资源分配问题。模型采用Python的PuLP库实现,通过数学建模将问题转化为目标函数和约束条件,包括资源总量限制、项目时间窗约束、优先关系约束和项目组合比例约束等。文章详细介绍了从问题定义、数学模型构建到Python实现的全过程,并提供了数据生成函数和优化器类框架,为企业在有限资源下进行多项目选择和调度提供了有效的决策支持工具。原创 2025-07-25 07:42:27 · 31 阅读 · 0 评论 -
基于深度学习的肺癌肿瘤细胞图像识别与分类系统
本文介绍了一个基于深度学习的肺癌肿瘤细胞图像识别与分类系统。该系统采用卷积神经网络(CNN)技术,能够自动识别和分类四种肺癌细胞类型:腺癌、鳞状细胞癌、小细胞癌和良性细胞。系统实现包括数据预处理(图像增强、归一化)、模型构建(基础CNN、ResNet50迁移学习、带注意力机制的自定义模型)以及性能评估。通过深度学习技术,该系统可辅助病理学家提高肺癌诊断的准确性和效率,有望成为肺癌早期筛查的重要工具。文中详细展示了Python实现代码,包括数据加载、增强处理和不同网络架构的构建方法。原创 2025-07-24 16:27:17 · 84 阅读 · 0 评论 -
基于深度学习的CT图像3D重建技术研究
本文研究了基于深度学习的CT图像3D重建技术。研究内容包括:1)系统介绍CT成像原理和传统重建算法(如滤波反投影和代数重建技术);2)详细阐述数据预处理流程,包括数据标准化、增强和分块处理;3)构建3D U-Net等深度学习模型,采用双卷积块和下采样模块;4)提供完整的Python实现代码。该方法通过深度学习架构学习CT图像的空间特征,显著提升了重建质量和效率,为医学影像处理提供了新的解决方案。实验结果表明该方法优于传统重建算法,在低剂量CT等特殊场景下表现优异。原创 2025-07-24 16:18:18 · 92 阅读 · 0 评论 -
基于MASAC算法的建筑群需求响应系统设计与实现
摘要: 本文提出基于MASAC(多智能体软动作评价)算法的建筑群需求响应系统,以解决建筑能源协同优化问题。研究将多栋建筑的能源管理建模为部分可观测马尔可夫博弈,利用MASAC算法的最大熵框架实现集中训练-分散执行的协同控制。系统在CityLearn仿真环境中验证,通过光伏储能协调和电价响应,平衡电网稳定性、用户舒适度和经济效益。算法采用混合奖励架构,各智能体策略网络和Q网络协同优化,处理连续动作空间和高维状态。实验表明,MASAC相比传统方法能有效降低用电成本,提升能源利用效率,为建筑群智能能源管理提供新思原创 2025-07-24 16:16:12 · 37 阅读 · 0 评论 -
花粉图片自动识别网站开发指南
本文介绍了使用Python开发花粉图片自动识别网站的完整流程。项目基于Flask框架,利用预训练的ResNet50模型提取图像特征,通过FAISS库实现高效相似度搜索。系统包含用户界面、图像预处理、特征提取、数据库比对和结果展示等模块,支持用户上传花粉图片并与20万张标记图片库进行比对识别。文章详细说明了技术栈选择、系统架构、数据库设计和核心代码实现,为开发者提供了从环境配置到部署的完整指南。原创 2025-07-20 08:12:12 · 146 阅读 · 0 评论 -
金属伪影校正的双域联合深度学习框架复现
本文复现了一种用于工业CT图像金属伪影校正的双域联合深度学习框架。该框架结合UNet和ResNet架构,在投影域和图像域同时进行校正处理。方法实现包括:1)环境配置与数据准备,采用模拟CT数据集并添加混合噪声;2)网络架构设计,包含投影域UNet校正模块和图像域ResNet增强模块;3)双域联合训练策略,通过交替优化实现协同校正。实验结果表明,该方法能有效减少金属伪影,相比传统单域方法在PSNR和SSIM指标上有显著提升。原创 2025-07-18 12:16:52 · 91 阅读 · 0 评论 -
基于DTLC-AEC与DTLN的轻量级实时语音降噪系统设计与实现
本文提出了一种轻量级实时语音降噪系统,结合DTLC-AEC回声消除和DTLN时域降噪两种深度学习模型。通过量化剪枝等优化技术,将模型总大小压缩至2MB以内,适用于资源受限的实时通信场景。系统采用双模型级联架构,先进行回声消除再处理环境噪声。针对两个模型分别采用了结构化剪枝、混合精度量化、知识蒸馏等优化策略,并详细介绍了量化感知训练和多种剪枝方法。最终实现了在保持语音质量的同时满足嵌入式设备资源限制的轻量级解决方案。原创 2025-07-17 21:29:11 · 136 阅读 · 0 评论 -
基于组学数据的药物敏感性预测模型构建与验证
本研究整合多组学数据构建药物敏感性预测模型,采用CCLE和TCGA数据库的基因表达、突变和拷贝数变异数据,结合GDSC的药物反应数据。通过四步特征选择方法(方差过滤、单变量筛选、随机森林/Lasso特征重要性、递归特征消除)降维后,比较了弹性网络、随机森林、XGBoost和神经网络四种算法的预测性能。研究为精准医疗提供了基于多组学数据的药物敏感性预测新方法,有助于优化临床用药决策。原创 2025-07-16 17:17:02 · 284 阅读 · 0 评论 -
基于Scikit-learn的机器学习建模与SHAP解释分析
摘要: 本项目基于Scikit-learn实现完整机器学习流程,包含数据预处理、特征工程、模型训练与SHAP解释分析。采用400条记录的数据集,首先进行缺失值填充(数值用中位数,分类用众数)、异常值处理(Z-score检测+中位数替换)和特征标准化/归一化。通过方差阈值(0.01)移除低方差特征,并剔除相关系数>0.7的高相关特征。使用Lasso回归、随机森林和XGBoost三种算法,结合SHAP值进行模型可解释性分析。关键步骤包括:数据探索(分布可视化)、特征选择(Lasso系数筛选)和模型评估.原创 2025-07-15 06:56:14 · 219 阅读 · 0 评论 -
基于血常规数据的新冠、甲流与健康人群分类研究
本研究利用机器学习分析血常规数据,建立了区分COVID-19、甲流和健康人群的分类模型。收集6000份样本(各2000例),涵盖22项血液指标。通过特征工程和算法比较,随机森林模型表现最佳,准确率达92.3%。研究发现淋巴细胞计数、中性粒细胞与淋巴细胞比值等指标具有关键鉴别价值。该模型为临床早期筛查和鉴别诊断提供了有效工具,尤其在资源有限地区更具应用价值。研究揭示了COVID-19与甲流在血液学参数上的差异特征,为精准医疗提供了数据支持。原创 2025-07-14 01:07:49 · 118 阅读 · 0 评论 -
智能逃生轮椅系统设计与实现
智能逃生轮椅系统摘要 本项目设计了一个基于计算机视觉和路径规划的智能逃生轮椅系统,帮助行动不便者在火灾等紧急情况下快速逃生。系统采用Blender构建3D场景(20×20×20房间),随机生成占20%空间的障碍物(床、桌子、沙发),并放置轮椅和3-5个火焰源。技术栈包括Blender 3D建模、PyTorch深度学习框架、OpenCV视觉处理和A*路径规划算法。系统通过摄像头识别轮椅、火焰和障碍物,计算最优逃生路径,并标记安全出口。整体架构包含场景建模、视觉识别、路径规划、决策控制和可视化五大模块,为行动不原创 2025-07-14 00:15:00 · 102 阅读 · 0 评论 -
基于YOLOv7的改进模型:集成Swin Transformer和ASFF模块
本研究提出了一种改进的YOLOv7目标检测模型,通过集成Swin Transformer和ASFF模块来提升性能。YOLOv7虽在速度和精度上表现良好,但在长距离依赖建模和特征融合方面仍有局限。改进模型利用Swin Transformer捕捉全局上下文信息,通过窗口自注意力机制实现高效计算;同时引入ASFF模块自适应融合多尺度特征。文中详细阐述了Swin Transformer Block的实现,包括窗口注意力机制、相对位置编码和多层感知机等核心组件。该改进方案有望提升模型在复杂场景下的检测能力。原创 2025-07-13 13:50:11 · 37 阅读 · 0 评论 -
基于PaddleOCR与深度学习的营业执照信息识别与数据分析系统
本项目构建了一个基于PaddleOCR与深度学习的营业执照智能处理系统,主要包含OCR识别、文本处理、分类、数据分析和可视化五大模块。系统采用模块化设计,使用PaddleOCR进行高精度文本提取,结合正则表达式和NLP技术结构化处理关键字段(如公司名称、信用代码等),并集成CNN/NLP混合模型实现营业执照自动分类。技术栈涵盖PaddlePaddle、PyTorch、OpenCV等深度学习框架,以及Pandas、Matplotlib等数据分析工具。系统可高效完成从图像识别到数据分析的完整流程。原创 2025-07-13 13:39:28 · 36 阅读 · 0 评论 -
三维潜空间扩散模型解码器的残差学习优化
本文提出一种基于主副支路残差学习的三维潜空间扩散模型解码器优化方法。针对现有三维扩散模型解码器在特征提取和细节恢复上的不足,设计了包含主支路(全局特征提取)和副支路(局部细节增强)的双路径架构,通过残差连接和自适应特征融合机制实现高效信息传递。方法采用复合损失函数(MSE、3D-SSIM和感知损失)进行优化,并应用渐进学习率、混合精度训练等技术提升训练效率。实验表明,该架构能有效改善三维数据的生成质量,增强细节恢复能力,同时保持较高的训练稳定性。原创 2025-07-13 13:26:46 · 24 阅读 · 0 评论 -
基于双层博弈的电动汽车动态电价优化模型研究
本文提出了一种基于双层博弈的电动汽车动态电价优化模型,针对居民区、商业区和工作区充电需求的时空差异特性进行优化。上层模型采用改进的混合粒子群算法(HPSO)优化运营商电价策略,下层模型实施区域差异化的分时段充电优惠。通过引入峰谷差率、负荷波动率和收益保障等多重约束,模型实现了用户成本降低17.3%、运营商收益提升12.8%、电网峰谷差率控制在15%以下的三重目标。仿真结果表明,该模型有效均衡了多方利益,为电动汽车充电管理的智能化提供了新思路。原创 2025-07-13 12:14:52 · 191 阅读 · 0 评论 -
电阻抗成像肺功能测试数据分析与直方图生成
本文介绍了基于MATLAB的电阻抗成像(EIT)肺功能测试数据分析方法。研究针对32×32像素的EIT图像序列,通过三步算法处理:首先计算特定时间点与谷值图像的差值,然后分析1秒后峰值与1秒值的差值,最终计算比值矩阵并处理异常值。系统展示了数据预处理、关键时间点检测、比值计算及统计分析的全流程,包括生成概率分布直方图和空间分布图等可视化方法。该分析为无创肺功能评估提供量化指标,可应用于临床呼吸监测和疾病诊断。原创 2025-07-13 12:09:08 · 55 阅读 · 0 评论 -
基于XGBoost与SHAP的储层评价系统设计与实现
本项目设计并实现了一套基于XGBoost和SHAP的智能储层评价系统。系统采用机器学习方法解决传统储层评价中主观性强、效率低的问题,技术方案包括数据预处理、XGBoost模型训练、SHAP解释模型和评价输出四个核心模块。通过特征工程和模型优化,构建了高精度的储层分类模型,并利用SHAP值提供特征重要性解释。系统实现了从数据清洗、模型训练到结果可视化的全流程,最终输出包括综合评价参数、分类结果及分析图表,为油气勘探开发决策提供客观、准确的数据支持。原创 2025-07-12 07:57:07 · 228 阅读 · 0 评论 -
基于MuJoCo的宇树科技G1机器人基础动作仿真研究
基于MuJoCo的宇树G1机器人基础动作仿真研究摘要 本研究利用MuJoCo物理引擎对宇树科技G1四足机器人进行运动仿真,构建了高精度的URDF模型并优化转换。通过Python实现机器人基础动作控制,包括站立平衡、行走、小跑和跳跃等运动模式。研究采用PD控制算法进行姿态稳定,并开发了周期步态规划方法。仿真结果表明,该模型能准确反映G1机器人的运动特性,为后续复杂运动算法开发提供了可靠的测试平台。研究解决了四足机器人仿真中的模型精度与控制参数优化问题,具有实际应用价值。 关键词:MuJoCo;四足机器人;运动原创 2025-07-11 17:32:50 · 347 阅读 · 0 评论 -
基于U-net的高阶心音信号去噪系统设计与实现
摘要 本文提出了一种结合频域差分预处理和U-net深度学习的心音信号去噪方法。系统采用两阶段处理流程:首先通过频域差分技术初步消除噪声,再利用改进的U-net网络进行深度去噪。实验结果表明,该方法有效提升了心音信号质量,信噪比改善显著。文中详细介绍了系统架构、频域差分原理、U-net模型实现及评估方法,为心音信号处理提供了新的技术方案。该系统具有较好的噪声适应性,可应用于临床心音诊断辅助。 关键词:心音去噪;U-net网络;频域差分;深度学习;信号处理原创 2025-07-10 20:26:00 · 117 阅读 · 0 评论 -
基于PID控制的开沟器深度控制系统建模与数据生成研究
本文提出了一种基于PID控制的开沟器作业深度精准控制方法,通过建立包含深度误差、误差变化率及PID参数的三维输入空间模型,构建了开沟器的动态响应系统。研究采用系统辨识方法获取了2000组训练数据,为后续智能控制算法优化提供了数据基础。实验结果表明,该建模方法能有效评估PID参数组合的控制效果,误差预测准确率达到92.7%。研究还分析了不同土壤条件下的参数敏感性,为工程应用提供了具体参数整定范围建议。该数据生成方法为数据驱动的智能控制算法研究提供了高质量的训练样本。原创 2025-07-09 16:34:23 · 22 阅读 · 0 评论 -
这段代码实现了一个**多通道加热系统的实时监控系统**,通过串口从Arduino等微控制器获取数据,并实时可视化显示多个加热片的温度和功率变化
本文介绍了一个基于Python的多通道加热系统实时监控程序,通过串口从Arduino获取数据并动态可视化显示5个加热片的温度和功率变化。程序采用正则表达式解析串口数据(格式如"CH1:25.5°C/40.0°C,200;"),使用Matplotlib创建双图表界面:温度曲线图显示各加热片实时温度,功率图显示PWM控制值(0-255)。系统具有500个数据点的历史记录功能,支持自动缩放坐标轴,并优化了中文字体显示,提供稳定的实时监控解决方案。程序包含异常处理机制。原创 2025-07-09 11:20:54 · 91 阅读 · 0 评论 -
语义分割模型的轻量化与准确率提升研究
本文研究了语义分割模型的轻量化与准确率提升方法。语义分割作为计算机视觉的核心任务,在自动驾驶、医学影像等领域应用广泛,但面临模型复杂度过高和准确率不足的挑战。文章系统分析了FCN、U-Net和DeepLab等主流模型架构,提出了优化策略,并通过实验验证有效性。研究内容包括语义分割基础概念、常用数据集(PASCAL VOC、Cityscapes等)和评价指标(mIoU、PA等),重点探讨了模型轻量化和准确率提升的技术路径,为实际应用中的模型优化提供了理论支持和实践指导。原创 2025-07-09 11:07:29 · 194 阅读 · 0 评论 -
基于小样本的高光谱图像分类任务:CMFSL方法及Python实现
本文提出了一种基于小样本的高光谱图像分类方法CMFSL(Cross-Modality Few-Shot Learning),该方法通过结合跨模态学习和元学习策略,有效解决了高光谱图像分类中样本获取困难、维度高等挑战。文章详细阐述了CMFSL方法的原理框架,包括特征提取网络、跨模态对齐模块和元学习分类器三部分。在Python实现方面,提供了数据预处理、模型构建的完整代码示例,使用PyTorch实现了SpectralEncoder、AuxiliaryEncoder和CMFSL模型。该方法通过引入辅助模态信息和元原创 2025-07-09 10:03:37 · 431 阅读 · 0 评论 -
Simulink与Python同步通信实现方案
本文介绍了Simulink与Python实现同步通信的技术方案,采用TCP/IP套接字通信方式在8000秒仿真时间内完成400次数据交换。系统采用客户端-服务器架构,Python作为客户端发起请求,Simulink作为服务器处理数据。文章详细阐述了S-Function模块的实现方法,包括TCP/IP服务器初始化、数据收发功能,以及Python客户端通信类的设计,包含连接管理、数据打包解包和主控制循环逻辑。该方案实现了20秒固定间隔的可靠数据交换,为跨平台协同仿真提供了实用解决方案。原创 2025-07-09 08:51:14 · 58 阅读 · 0 评论 -
改进推荐系统算法以提升专利与需求匹配准确度的研究
摘要 本研究针对专利与需求匹配系统中存在的准确度不足问题,提出了一种融合多模态特征提取与知识图谱的混合推荐算法。系统采用层次化架构设计,前端包含企业端和学校端双界面,后端集成SciBERT模型进行语义特征提取、技术特征分析及自适应权重融合。通过构建领域知识图谱增强上下文理解,并利用Milvus向量数据库实现高效相似度匹配。实验结果表明,该算法在匹配准确度上较传统方法提升35.6%,有效解决了语义理解不足、特征单一等关键问题。系统实现基于Python技术栈,为技术转移领域的智能化匹配提供了可行解决方案。原创 2025-07-09 06:18:33 · 43 阅读 · 0 评论 -
部署并运行Spike-Driven-Transformer或QKFormer
本文介绍了Spike-Driven-Transformer或QKFormer模型的部署与运行方法。内容包括:1)环境准备与依赖安装;2)代码获取;3)CIFAR和ImageNet数据集的准备;4)针对不同数据集的训练配置示例;5)模型测试方法;6)关键参数调整建议;7)常见问题解决方法;8)训练过程监控工具。文章特别强调了SNN模型特有的时间步长和神经元参数设置,并建议先在CIFAR-10上进行测试验证。最后提醒注意硬件要求、版本依赖等事项,为脉冲驱动Transformer模型的实验部署提供了完整指南。原创 2025-07-08 21:07:40 · 105 阅读 · 0 评论 -
多模态数据集转换与MMIB模型应用:从图像到文本的跨模态分析
本文详细探讨了将现有图片数据集转换为文本数据集的过程,以及如何将这些多模态数据应用于Twitter15和Twitter17等多模态模型,最终在MMIB(Multimodal Information Bottleneck)模型上运行的全套方法。文章涵盖了数据集转换的技术细节、多模态表示学习的关键概念、特征提取方法、跨模态对齐策略,以及在实际模型中的应用和评估。通过系统化的处理流程和实验验证,本研究为研究者提供了将单模态图像数据扩展为多模态资源的完整方案,并展示了其在先进多模态模型中的有效应用。原创 2025-07-07 21:33:37 · 100 阅读 · 0 评论