程序员石磊
专注大模型、AI Agent、室内定位、在职读研分享!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于信标RSSI的GNN-Transformer室内定位算法
本文提出了一种基于深度学习的室内定位系统,该系统创新性地结合了图神经网络(GNN)和Transformer架构,利用BLE信标的RSSI信号实现高精度定位。核心创新点包括:1)采用GNN建模信标空间关系并引入注意力机制;2)利用Transformer进行时序依赖性分析;3)集成CNN特征提取器处理RSSI信号;4)提供不确定性估计以评估预测置信度。系统架构包含特征提取、空间注意力、图神经网络和Transformer编码器等模块,支持多数据集处理,并提供了完整的训练流水线、评估指标和可视化工具。实验结果表明,原创 2025-07-30 21:58:52 · 53 阅读 · 0 评论 -
GATE:基于移动嵌入式设备的实时边缘构建图注意力神经网络用于鲁棒室内定位
贡献点说明1. 非欧几里得建模通过AHV建模RSS非均匀噪声结构,提升鲁棒性2. GNN盲点缓解引入MDHV与RTEC,解决高维图中信息传递失效问题3. 实时动态图构建RTEC支持在线阶段动态建边,适应环境变化4. 跨设备泛化能力强在7种手机上误差差异<0.25米,适配性强5. 高效部署模型仅604KB,延迟<1s,能耗<0.6J/s,适配移动端。原创 2025-07-19 20:16:44 · 109 阅读 · 0 评论 -
基于RSSI的室内定位的排列不变Transformer神经架构
本文提出了一种用于基于RSSI的室内定位的排列不变Transformer神经架构,将每个Wi-Fi信号扫描建模为(BSSID, RSSI)对的无序集合,通过学习BSSID嵌入并结合Set Transformer处理可变长度的稀疏输入,以捕捉接入点关系的基于注意力的表示。在包含六栋建筑的校园环境数据集上的实验表明,LSTM模型表现最佳,平均定位误差低至2.23米,而表现次之,尤其在跨建筑和多层场景中优于MLP、RNN等基线模型,证明了基于集合的神经模型在处理稀疏、无序输入的室内定位任务中的有效性。原创 2025-06-15 15:12:49 · 103 阅读 · 0 评论 -
大规模真实场景 WiFi 感知基准数据集
WiFi感知的局限性现有研究依赖实验室环境下的同质硬件数据集(如Intel 5300芯片),缺乏真实场景中的用户、设备、环境多样性,导致模型泛化能力不足。现有数据集多为单任务、碎片化记录,无法支持多任务联合学习(如同时识别用户身份、活动和位置)。核心目标构建大规模真实场景基准数据集CSI-Bench,支持多任务WiFi感知研究,推动鲁棒性模型开发,解决现有数据集在泛化性、任务多样性、硬件异质性上的不足。原创 2025-06-01 21:36:26 · 238 阅读 · 0 评论 -
用llama3微调了一个WiFiGPT 用于室内定位
WiFi定位现状应用需求:室内导航、资产追踪、智能建筑等场景需要高精度定位,但传统方法(如RSSI指纹)受多径效应、环境动态变化、设备异构性影响显著。技术瓶颈:现有方案依赖手工设计特征(如CSI相位差、FTM时间戳),且需针对不同硬件和环境定制模型,泛化能力不足。LLM的潜力序列建模能力:Transformer架构擅长捕捉长距离依赖,适用于处理WiFi信号的时空相关性(如CSI子载波衰减模式、FTM时序波动)。零样本泛化。原创 2025-05-26 21:59:58 · 394 阅读 · 0 评论 -
室内定位:热门研究方向与未解难题深度解析
室内定位系统(IPS)在现代社会中具有重要应用,涵盖应急响应、智能建筑、医疗健康、零售物流、工业自动化等多个领域。尽管室外GPS技术已成熟,但室内定位仍面临诸多挑战,如复杂动态的室内环境、信号传播的多径效应和非视距问题,以及不同应用对精度、成本和功耗的多样化需求。目前,尚无一种普适性技术能满足所有严苛应用,导致室内定位的“室内红利”尚未完全释放。未来,混合系统和情境感知解决方案的研究将成为关键,以应对这些挑战并推动室内定位技术的进一步发展。原创 2025-05-15 18:39:32 · 133 阅读 · 0 评论 -
室内定位误差分布评估到底该用累计误差还是混淆矩阵?
模型类型输出形式推荐评估方式回归模型(x, y) 坐标✅ 累计误差 CDF 曲线分类模型(采集点)位置编号✅ 混淆矩阵 + Accuracy“回归看 CDF,分类看混淆矩阵;混合模型,双管齐下。选对评估工具,不只是为了报告好看,更能帮你真正优化模型结构、提升系统可靠性。如果你正开发一套 Wi-Fi 或 BLE 室内定位系统,不妨先思考:你是在哪一个模型结构?再选对应的评估方式,少走弯路!📩需要混淆矩阵可视化模板、CDF 绘图代码,欢迎留言交流!原创 2025-05-08 13:14:45 · 104 阅读 · 0 评论 -
多源数据融合处理方法综述
多源导航数据融合方法在多传感器技术、人工智能算法和计算能力发展的推动下取得显著进展,为导航系统性能提升提供支持。多源数据融合处理方法概述:单一导航传感器(如GNSS、INS等)在复杂环境下难以满足导航性能需求,集成导航技术通过融合多源数据来提高导航精度和可靠性。多源数据融合方法包括最优估计、滤波、不确定推理、MME、AI等,不同算法有其适用条件和场景。多源数据融合处理方法分类最优估计方法:通过不同估计准则处理未知参数估计问题,如最小二乘估计(LSE)最大似然估计(MLE)最大后验估计(MAPE)原创 2025-03-22 17:13:04 · 591 阅读 · 0 评论 -
AI驱动的无线定位:基础、标准、最新进展与挑战
本论文提供了一篇全面的 AI 无线定位综述,涵盖了从基础理论、标准化进展到最新研究成果的多个方面。它不仅回顾了传统无线定位方法的局限性,还深入探讨了 AI 如何赋能无线定位技术,并总结了目前的挑战和未来发展方向。对于希望研究 AI 无线定位的学者和工程师来说,这是一个非常有价值的参考资料。原创 2025-02-05 20:13:55 · 255 阅读 · 0 评论 -
汽车蓝牙钥匙定位仿真小程序
通过简单的蓝牙 RSSI 采集和三边定位算法,我们能够快速搭建一个“蓝牙钥匙定位”演示方案。在这个过程中,可以对室内 / 车内短距离定位有一个直观认识,也能在实践中掌握前后端协作、实时可视化等关键技能。后续若想在真实使用场景中取得更好的定位精度,还需要更多定向的软硬件优化和数据处理手段。原创 2025-01-29 23:17:07 · 1170 阅读 · 0 评论 -
于图神经网络 (Graph Neural Networks, GNN) 的 Wi-Fi 室内定位方法
研究目标:提出一种基于图神经网络(GraphNeuralNetworks,GNN)的Wi-Fi室内定位方法(GLoc),旨在提高定位精度和鲁棒性。主要发现:GLoc在144平方米数据集上的中位定位误差为23厘米,90%的定位误差小于97厘米,显著优于现有方法,尤其是在动态环境中展现出更高的鲁棒性。原创 2025-01-20 13:58:01 · 164 阅读 · 0 评论 -
使用蓝牙信标和接收到的信号强度指纹的智能手表进行简化的室内定位
全球定位系统(GPS)的变化已被用于跟踪用户的位置。然而,当需要在室内空间(如房屋或建筑物)中进行位置跟踪时,可能需要另一种精确的位置跟踪方法,因为 GPS 信号可能会严重衰减或完全被阻挡。在我们的室内定位方法中,我们开发了一种室内定位系统,该系统最大限度地减少了最终用户使用系统所需的努力和成本。该室内定位系统检测用户在已安装系统的房屋或室内空间中的房间级位置。我们结合使用蓝牙低功耗(BLE)信标和智能手表蓝牙扫描器来确定用户所在的房间。原创 2025-01-11 15:51:06 · 362 阅读 · 0 评论 -
智能手机多源传感器融合的室内定位方法综述
智能手机室内定位与导航是实现室内定位服务的关键技术。在复杂的室内场景中,多源传感器的融合得益于各种传感器的互补优势,已成为智能手机普及室内定位应用领域的研究热点。本文广泛回顾了当前主流的传感器和智能手机多源传感器融合的室内定位方法。我们总结了该领域的最新研究进展以及相关技术的特点和适用场景。最后,我们整理并归纳了该领域的关键问题和未来技术展望。原创 2025-01-02 23:20:16 · 1313 阅读 · 0 评论 -
元学习在室内定位中的实际落地流程
元学习在室内定位中的实际落地通过以下步骤实现:采集多任务数据、设计融合模型、使用元学习训练通用模型,并在新环境中快速适配。以 MetaGraphLoc 为例,该框架结合数据融合、动态 GNN 和元学习,显著提高了定位精度和适应性,为复杂室内环境中的定位系统提供了高效、可靠的解决方案。以下结合室内定位具体场景,以 WiFi RSSI 和 IMU 数据为例,详细讲解如何落地元学习框架,帮助解决跨楼层或跨建筑环境中的适配问题。原创 2024-12-30 14:15:09 · 206 阅读 · 0 评论 -
室内定位论文速递(11.26-11.29)
视觉-惯性-声学(VIA)传感器, 自主导航, 水下车辆, 定位精度。原创 2024-11-30 07:57:56 · 192 阅读 · 0 评论 -
室内定位论文速递(11.23-11.25)
球形机器人;姿态估计;传感器融合;卡尔曼滤波器;Delta滤波器;移动测绘;LiDAR。原创 2024-11-25 19:11:05 · 136 阅读 · 0 评论 -
智能家居中的自适应检测系统——Moat的探索与应用
Moat系统通过分布式观察设备(observers)和集中处理枢纽(hub),嗅探并分析Wi-Fi信号的物理特性(RSSI与CSI),从而判断设备位置。无需设备合作:即使目标设备未连接家庭网络或对抗性行为,也可被检测。自适应性:支持周期性更新模型以适应家庭环境的变化。便捷安装:无需复杂的设置,用户仅需在家中布置观察设备即可。原创 2024-11-25 13:37:20 · 332 阅读 · 0 评论 -
室内定位论文速递(11.18-11.22)
RNP(所需导航性能)、城市空中交通、四旋翼无人机、精度研究。原创 2024-11-22 14:49:24 · 137 阅读 · 0 评论 -
SAR-AAVs, 事件触发机制, 协同定位, 随机数据丢包, 分布式卡尔曼滤波(SDKF), GNSS拒止, 通信资源优化, 室内定位, 物联网(IoT), 机器学习, 定位服务, 传感器数据融合,
SAR-AAVs,事件触发机制,协同定位,随机数据丢包,分布式卡尔曼滤波(SDKF),GNSS拒止,通信资源优化。原创 2024-11-17 15:27:53 · 115 阅读 · 0 评论 -
室内定位论文精华-无人机与机器人在地下与室内环境中的自主导航与定位新技术
天文导航, 自主无人机, GNSS拒止环境, 稳定成像系统, 星图识别, 姿态估计, 位置估算, 室内定位, 数据扩充, 视觉化多维指纹, 增强生成网络, Kolmogorov-Arnold网络, 深度学习, 机器学习, WiFi-RTT, SLAM, 传感器融合, 室内导航, 行人导航, IMU, 航迹推算, LiDAR惯性导航, 地下环境, 分布式计算, 并行处理, 集群计算, 无人机, 视觉SLAM, 自主导航, 机器人定位原创 2024-11-14 10:06:42 · 666 阅读 · 0 评论 -
20241111_室内定位
本研究提出的问题是,在保证用户隐私的前提下,如何设计一种高效、准确的Wi-Fi室内定位系统。原创 2024-11-11 22:59:46 · 139 阅读 · 0 评论 -
室内定位论文精华-20241108
如何优化全站仪的初始化时间以确保其在不同运动模式下的精度和稳定性,特别是在进行复杂的地形测绘时。具体来说,本文探讨了不同的初始化时间和路径对全站仪测量结果的影响。原创 2024-11-09 14:15:04 · 154 阅读 · 0 评论 -
室内定位论文精华-20241104
室内定位论文精华原创 2024-11-04 11:19:30 · 130 阅读 · 0 评论 -
少样本无标签室内定位论文精华-20241102
室内定位原创 2024-11-02 11:09:46 · 126 阅读 · 0 评论 -
室内定位论文-20241020
室内定位原创 2024-10-24 13:49:28 · 120 阅读 · 0 评论 -
一种基于元学习少样本的无线定位框架
这篇论文**《MetaLoc: Learning to Learn Wireless Localization》提出了一种基于元学习的无线定位框架,名为**MetaLoc。其主要目的是解决现有定位方法在新环境中泛化能力差、需要大量数据和人力成本的问题。原创 2024-10-19 12:46:59 · 131 阅读 · 0 评论 -
室内定位论文整理-20241016
如何设计一个稳健且灵活的单目视觉惯性状态估计器,以解决机器人在动态环境中导航和定位的问题?原创 2024-10-16 23:47:00 · 385 阅读 · 0 评论 -
室内定位论文-20241013
本研究主要解决的问题是在低照明条件下,视觉里程计(Visual Odometry, VO)性能下降导致定位系统的准确性和可靠性显著降低。传统方法仅依赖于视觉特征,在光线不足的情况下会因特征检测和跟踪能力的减弱而受到影响。该研究旨在通过整合点线特征来增强视觉惯性里程计(Visual Inertial Odometry,VIO),以提升在昏暗环境下的鲁棒性能。原创 2024-10-13 16:45:08 · 190 阅读 · 0 评论 -
室内定位论文集-20241011期
如何通过自监督方法有效地在没有标签数据的情况下学习时间序列数据的表示?原创 2024-10-11 17:20:15 · 280 阅读 · 0 评论 -
室内定位论文整理-20241004期
在缺乏或不可靠全球导航卫星系统(GNSS)信号的环境中,如仓库、室内区域和密集的城市空间,在第五代(5G)毫米波(mmWave)定位系统的兴趣正在增加。这项研究旨在通过将5G mmWave系统与电子扫描雷达(ESR)的姿态校正相结合来提高定位精度,从而改善在GNSS中止期间惯性导航系统(INS)的性能。本文深入探讨了在提升双目视觉-惯性初始化技术过程中,提高翻译准确性的问题。该技术结合立体视觉和惯性传感器的数据来实现机器人与自主系统的精确定位与制图任务,从而极大地提升了导航的效率。原创 2024-10-04 13:03:08 · 2480 阅读 · 0 评论 -
室内定位论文整理-20240930期
本文探讨了紧耦合视觉惯性SLAM(Simultaneous Localization And Mapping)系统中利用点和线特征融合的可能性,重点在于通过有效整合多模态传感器数据提升定位准确性。关键方法包括开发新颖的数据融合策略,在考虑直线提供的几何约束的同时,结合摄像头和IMU测量的点与线信息。本文提出的方法提供了空中LiDAR水下地貌数据过滤的一个前景解决方案。原创 2024-09-30 22:04:28 · 2607 阅读 · 0 评论 -
室内定位论文整理-20240925期
本文提出了一种增强多传感器无人飞行器(UAV)导航系统中联邦滤波器在对抗干扰方面的鲁棒性的新方法。所提出的解决方案旨在通过有效抑制外部干扰,提升精度和可靠性,重点在于实时跟踪的改进。迭代算法:使用一个基于预定义指标及前一迭代反馈的迭代过程来优化时间差异估计,旨在在实际条件下最小化误差,并增强定位精度。本文深入探讨了通过优化基于Kalman滤波器的方法来提升行人死回溯定位精度和实时性,特别是针对移动设备与受限计算资源环境的应用。原创 2024-09-25 19:30:00 · 834 阅读 · 0 评论 -
室内定位论文整理-20240921期
本文回顾了近年来在视觉惯性导航(VIO)技术领域出现的最新进展和创新。VIO是自主导航中的一项基本方法,通过融合摄像机和惯性测量单元(IMUs)的数据来估计设备运动。本报告重点关注了DM-VIO、Ema-VIO、注意力机制等技术的发展,以及自我监督可微卡尔曼滤波器、无监督学习技巧、自适应视觉模态选择方法、高效深度学习框架、不平衡回归问题的解决策略和神经网络中旋转表示的连续性等方面。原创 2024-09-21 10:30:52 · 1143 阅读 · 0 评论 -
室内定位论文整理-20240911期
本文提出的新算法为改进基于PDR系统的室内定位能力提供了创新解决方案。结合谱减法和维纳滤波技术,实现了在动态室内环境下的信号优化处理,提升了定位准确度与鲁棒性。未来研究将聚焦于扩大算法应用范围、整合其他传感器数据及探索其在不同室内场景的可能性。MULT - Wearable Mechanical Upper Limbs Tracker for Teleoperation 的研发旨在增强人类与机器人的交互,并提供了一种适用于远程操作场景的创新解决方案。原创 2024-09-15 16:10:50 · 2160 阅读 · 0 评论 -
多源融合室内停车场反向寻车导航详细实现方案
本方案旨在设计并实现一套基于蓝牙Beacon、Wi-Fi和IMU(惯性测量单元)的高精度室内定位与导航系统,特别针对多楼层的地下停车场环境。系统包括硬件部署、室内地图制作、定位算法开发和导航功能实现。原创 2024-09-15 12:23:39 · 1653 阅读 · 0 评论 -
适用于BLE室内定位系统的自适应路径损耗模型
ADAM模型通过自适应调整路径损耗模型的参数,并结合数据融合技术,实现了BLE室内定位的显著提升。相比传统的固定参数方法,ADAM能够更好地适应不同区域的信号传播特性,在无需复杂训练的情况下有效提高定位精度。未来,ADAM的自适应路径损耗模型有望在更多动态环境和大规模场景中得到应用,并为智能建筑、物联网等领域提供更精准、可靠的室内定位服务。原创 2024-09-10 11:52:14 · 827 阅读 · 0 评论 -
室内定位:紧耦合的学习惯性里程 (TLIO)
这篇论文提出了一种新的紧耦合框架,旨在通过IMU进行精准的状态估计。传统的IMU方法在短时间内容易产生显著的漂移,论文中的方法通过神经网络回归3D位移估计,并将其与EKF紧密结合,从而提高了位置和姿态估计的精度。原创 2024-08-06 22:29:16 · 423 阅读 · 0 评论 -
亲手打造:基于WiFi-CSI的室内定位项目开源啦!
是一个开源项目,复现了一篇论文(项目内),旨在利用深度学习技术,通过WiFi信道状态信息(CSI)实现精确的室内定位。CSI数据包含信号的幅度、相位和传播环境等信息,来进行室内定位。受到同行的表扬欢迎各位star!原创 2024-07-18 19:42:41 · 1180 阅读 · 0 评论 -
单一WiFi的RSSI指纹和行人航位推算(PDR)方法
本文提出的“H2LWRF-PDR”算法,通过结合单一Wi-Fi接入点的RSSI指纹和行人航位推算(PDR)方法,克服了传统多AP定位方法的局限性,实现了高效的室内定位。算法通过HDBSCAN去除噪声、随机森林分类器进行位置估算,并结合IMU数据和LOWESS滤波器进行平滑处理,有效提高了定位精度和鲁棒性。在多种复杂环境中的实验结果表明,H2LWRF-PDR算法在单AP定位中具有显著优势。原创 2024-07-01 23:38:23 · 244 阅读 · 0 评论 -
神经网络高效训练:优化GPU受限环境下的大规模CSV数据处理指南
机器学习模型的训练通常需要大量的数据,尤其是对于深度神经网络模型。然而,当数据集非常庞大时,直接将其全部加载到内存中可能会导致内存占用过高,甚至内存溢出。此外,频繁地从磁盘读取数据也会大幅降低训练效率。因此,合理地管理数据读取过程至关重要,以在内存占用和训练速度之间取得平衡。在本文中,我将分享一种针对大型CSV数据集的优化策略,通过延迟加载、数据分批处理、内存映射、LRU缓存以及GPU加速等方法,有效解决了内存溢出和训练效率低下的问题。原创 2024-04-29 18:36:01 · 329 阅读 · 0 评论